A Strong Law for Some Generalized Urn Processes
A Strong Law for Some Generalized Urn Processes
Let $f$ be a continuous function from the unit interval to itself and let $X_0, X_1, \cdots$ be the successive proportions of red balls in an urn to which at the $n$th stage a red ball is added with probability $f(X_n)$ and a black ball with probability $1 - f(X_n)$. …