Strong convergence of resolvents of monotone operators in Banach spaces
Strong convergence of resolvents of monotone operators in Banach spaces
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E Superscript asterisk"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>E</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{E^*}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a real strictly convex dual Banach space with a Fréchet differentiable norm, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> …