Ask a Question

Prefer a chat interface with context about you and your work?

Asymptotic integral kernel for ensembles of random normal matrices with radial potentials

Asymptotic integral kernel for ensembles of random normal matrices with radial potentials

The method of steepest descent is used to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution \documentclass[12pt]{minimal}\begin{document}$P_{N}(z_{1},\cdots ,z_{N})=Z_{N}^{-1}\emph {e}^{-N\sum _{i=1}^{N}V_{\alpha }(z_{i})}\prod _{1\le i<j\le N}\left|z_{i}-z_{j}\right|^{2},$\end{document}PN(z1,⋯,zN)=ZN−1e−N∑i=1NVα(zi)∏1≤i<j≤Nzi−zj2,where Vα(z) = |z|α, \documentclass[12pt]{minimal}\begin{document}$z\in \mathbb {C}$\end{document}z∈C and α ∈ ]0, ∞[. Asymptotic formulas with error estimate on sectors are …