Classifying spaces and Dirac operators coupled to instantons
Classifying spaces and Dirac operators coupled to instantons
Let<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M left-parenthesis k comma upper S upper U left-parenthesis l right-parenthesis right-parenthesis"><mml:semantics><mml:mrow><mml:mi>M</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>l</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">M(k,SU(l))</mml:annotation></mml:semantics></mml:math></inline-formula>denote the moduli space of based gauge equivalence classes of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper U left-parenthesis l right-parenthesis"><mml:semantics><mml:mrow><mml:mi>S</mml:mi><mml:mi>U</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>l</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">SU(l)</mml:annotation></mml:semantics></mml:math></inline-formula>instantons on principal bundles over<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S …