Ask a Question

Prefer a chat interface with context about you and your work?

Stability Problem in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">O</mml:mi><mml:mo>(</mml:mo><mml:mi mathvariant="italic">N</mml:mi><mml:mo>)</mml:mo></mml:math>Nonlinear Sigma Model

Stability Problem in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">O</mml:mi><mml:mo>(</mml:mo><mml:mi mathvariant="italic">N</mml:mi><mml:mo>)</mml:mo></mml:math>Nonlinear Sigma Model

The stability problem for the $O(N)$ nonlinear sigma model in $2+\ensuremath{\epsilon}$ dimensions is considered. We present results for the $1/{N}^{2}$ order calculations of the critical exponents (in $2<d<4$ dimensions) of the composite operators relevant for this problem. Arguments in favor of the scenario with the conventional fixed point are given.