Ask a Question

Prefer a chat interface with context about you and your work?

Bond algebras and exact solvability of Hamiltonians: Spin<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mstyle scriptlevel="1"><mml:mfrac bevelled="false"><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mstyle></mml:mrow></mml:math>multilayer systems

Bond algebras and exact solvability of Hamiltonians: Spin<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mstyle scriptlevel="1"><mml:mfrac bevelled="false"><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mstyle></mml:mrow></mml:math>multilayer systems

We introduce an algebraic methodology for designing exactly-solvable Lie model Hamiltonians. The idea consists in looking at the algebra generated by bond operators. We illustrate how this method can be applied to solve numerous problems of current interest in the context of topological quantum order. These include Kitaev's toric code …