Ask a Question

Prefer a chat interface with context about you and your work?

Cycle rank of Lyapunov graphs and the genera of manifolds

Cycle rank of Lyapunov graphs and the genera of manifolds

We show that the cycle-rank <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">r(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a Lyapunov graph <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a manifold <inline-formula content-type="math/mathml"> …