Prefer a chat interface with context about you and your work?
Tensor rank of the tripartite state<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>|</mml:mo><mml:mi>W</mml:mi><mml:msup><mml:mo>〉</mml:mo><mml:mrow><mml:mo>⊗</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math>
Tensor rank refers to the number of product states needed to express a given multipartite quantum state. Its nonadditivity as an entanglement measure has recently been observed. In this Brief Report, we estimate the tensor rank of multiple copies of the tripartite state $|W\ensuremath{\rangle}=\frac{1}{\sqrt{3}}(|100\ensuremath{\rangle}+|010\ensuremath{\rangle}+|001\ensuremath{\rangle})$. Both an upper bound and a …