Ask a Question

Prefer a chat interface with context about you and your work?

The Variance Conjecture on Some Polytopes

The Variance Conjecture on Some Polytopes

We show that any random vector uniformly distributed on any hyperplane projection of B 1 n or B ∞ n verifies the variance conjecture $$\text{Var }\vert X{\vert }^{2} \leq C\sup\limits_{ \xi \in {S}^{n-1}}\mathbb{E}\langle X,{\xi \rangle }^{2}\mathbb{E}\vert X{\vert }^{2}.$$ Furthermore, a random vector uniformly distributed on a hyperplane projection of B …