Ask a Question

Prefer a chat interface with context about you and your work?

Self-truncation and scaling in Euler-Voigt-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math>and related fluid models

Self-truncation and scaling in Euler-Voigt-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math>and related fluid models

A generalization of the 3D Euler-Voigt-$\ensuremath{\alpha}$ model is obtained by introducing derivatives of arbitrary order $\ensuremath{\beta}$ (instead of 2) in the Helmholtz operator. The $\ensuremath{\beta}\ensuremath{\rightarrow}\ensuremath{\infty}$ limit is shown to correspond to Galerkin truncation of the Euler equation. Direct numerical simulations (DNS) of the model are performed with resolutions up to …