Ask a Question

Prefer a chat interface with context about you and your work?

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mover><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mo>→</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:mrow><mml:mi>s</mml:mi><mml:mi>γ</mml:mi><mml:mi>γ</mml:mi></mml:math>transition in softly broken supersymmetry

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mover><mml:mrow><mml:mi>b</mml:mi></mml:mrow><mml:mrow><mml:mo>→</mml:mo></mml:mrow></mml:mover></mml:mrow></mml:mrow><mml:mi>s</mml:mi><mml:mi>γ</mml:mi><mml:mi>γ</mml:mi></mml:math>transition in softly broken supersymmetry

We study the effect of supersymmetric contributions to the effective quark transition $\stackrel{\ensuremath{\rightarrow}}{b}s\ensuremath{\gamma}\ensuremath{\gamma},$ including leading order QCD effects. We apply the discussion to the decay ${B}_{s}\ensuremath{\rightarrow}\ensuremath{\gamma}\ensuremath{\gamma}.$ Even though one-particle irreducible contributions could play a relevant role, numerical cancelations make the amplitude for the two-photon emission strongly correlated to the $\stackrel{\ensuremath{\rightarrow}}{b}s\ensuremath{\gamma}$ …