Ask a Question

Prefer a chat interface with context about you and your work?

Another Representation for the Maximal Lie Algebra of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:mi>l</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi>ℝ</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>in Terms of Operators

Another Representation for the Maximal Lie Algebra of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:mi>l</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mi>ℝ</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math>in Terms of Operators

We provide an alternate representation to the result that the Lie algebra of generators of the system of n differential equations, ( y a ) ″ = 0, is isomorphic to the Lie algebra of the special linear group of order ( n + 2), over the real numbers, s …