Ask a Question

Prefer a chat interface with context about you and your work?

On the existence of minimal surfaces with singular boundaries

On the existence of minimal surfaces with singular boundaries

In 1931, Jesse Douglas showed that in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, every set of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> rectifiable …