Quotients of $c\sb{0}$ are almost isometric to subspaces of $c\sb{0}$
Quotients of $c\sb{0}$ are almost isometric to subspaces of $c\sb{0}$
It is shown that for every <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\varepsilon > 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and quotient space <italic>X</italic> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="c 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>c</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{c_0}</mml:annotation> </mml:semantics> …