Ask a Question

Prefer a chat interface with context about you and your work?

Convergence of polynomial ergodic averages of several variables for some commuting transformations

Convergence of polynomial ergodic averages of several variables for some commuting transformations

Let $(X,\mathcal{B},\mu)$ be a probability space and let $T_1,\ldots , T_l$ be $l$ commuting invertible measure preserving transformations of $X$. We show that if $T_1^{c_1} \ldots T_l^{c_l}$ is ergodic for each $(c_1,\ldots ,c_l)\neq(0,\ldots,0)$, then the averages $\frac{1}{|\Phi_N|}\sum_{u\in\Phi_N}\prod _{i=1}^r T_1^{p_{i1}(u)}\ldots T_l^{p_{il}(u)}f_i$ converge in $L^2(\mu)$ for all polynomials $p_{ij} : \mathbb {Z}^d\to\mathbb{Z}$, …