Ask a Question

Prefer a chat interface with context about you and your work?

Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Cu</mml:mi><mml:mi mathvariant="normal">Fe</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>

Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Cu</mml:mi><mml:mi mathvariant="normal">Fe</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>

Magnetoelectric and magnetoelastic phenomena have been investigated on a frustrated triangular antiferromagnetic lattice in $\mathrm{Cu}\mathrm{Fe}{\mathrm{O}}_{2}$. Inversion-symmetry breaking, manifested as a finite electric polarization, was observed in noncollinear (helical) magnetic phases and not in collinear magnetic phases. This result demonstrates that the noncollinear spin structure plays an important role in inducing …