Cyclic partitions of complete uniform hypergraphs
Cyclic partitions of complete uniform hypergraphs
By $K^{(k)}_n$ we denote the complete $k$-uniform hypergraph of order $n$, $1\le k \le n-1$, i.e. the hypergraph with the set $V_n=\{ 1,2,...,n\}$ of vertices and the set $V_n \choose k$ of edges. If there exists a permutation $\sigma$ of the set $V_n$ such that $\{ E,\sigma (E),..., \sigma^{q-1}(E) \}$ …