$G$-identities on associative algebras
$G$-identities on associative algebras
Let $R$ be an algebra over a field and $G$ a finite group of automorphisms and anti-automorphisms of $R$. We prove that if $R$ satisfies an essential $G$-polynomial identity of degree $d$, then the $G$-codimensions of $R$ are exponentially bounded and $R$ satisfies a polynomial identity whose degree is bounded …