ARITHMETIC PROGRESSIONS IN SETS OF SMALL DOUBLING
ARITHMETIC PROGRESSIONS IN SETS OF SMALL DOUBLING
We show that if a finite, large enough subset A of an arbitrary abelian group satisfies the small doubling condition |A + A| < (log |A|)^{1 - epsilon} |A|, then A must contain a three-term arithmetic progression whose terms are not all equal, and A + A must contain an …