Small sets of infinite type are benign for the $\overline\partial$-Neumann problem
Small sets of infinite type are benign for the $\overline\partial$-Neumann problem
An explicit construction shows that the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="ModifyingAbove partial-differential With bar"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mo stretchy="false">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding="application/x-tex">\bar \partial</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Neumann operator and the Bergman and Szegő projections are globally regular in every smooth bounded pseudoconvex domain …