Ask a Question

Prefer a chat interface with context about you and your work?

Strong localization of doped holes in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>โˆ’</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi>Sr</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>FeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>from angle-resolved photoemission spectra

Strong localization of doped holes in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>โˆ’</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi>Sr</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>FeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math>from angle-resolved photoemission spectra

We have performed an angle-resolved photoemission spectroscopy study of ${\mathrm{La}}_{0.6}{\mathrm{Sr}}_{0.4}{\mathrm{FeO}}_{3}$ using in situ prepared thin films and determined its band structure. The experimental band dispersions could be well explained by an empirical band structure assuming the $G$-type antiferromagnetic state. However, the $\mathrm{Fe}\phantom{\rule{0.3em}{0ex}}3d$ bands were found to be shifted downward relative โ€ฆ