Ask a Question

Prefer a chat interface with context about you and your work?

Generalized perturbation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:mi>M</mml:mi><mml:mo>)</mml:mo></mml:math>-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation

Generalized perturbation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:mi>M</mml:mi><mml:mo>)</mml:mo></mml:math>-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation

In this paper, a simple and constructive method is presented to find the generalized perturbation (n,M)-fold Darboux transformations (DTs) of the modified nonlinear Schrödinger (MNLS) equation in terms of fractional forms of determinants. In particular, we apply the generalized perturbation (1,N-1)-fold DTs to find its explicit multi-rogue-wave solutions. The wave …