Sur la cohomologie réelle des groupes de Lie simples réels

Type: Article

Publication Date: 1978-01-01

Citations: 35

DOI: https://doi.org/10.24033/asens.1347

Abstract

A simple Lie group G has a nontrivial continuous 2-cohomology group H 2 (G, R) (which is then 1-dimensional) if and oniy if thé symmetric space G/K admits a G-invariant complex structure.Explicit cocycles are constructed for thèse nontrivial cohomology classes.We aiso give some results for H 2 (G, Z) and H 2 (G, T).

Locations

  • Annales Scientifiques de l École Normale Supérieure - View - PDF

Similar Works

Action Title Year Authors
+ On the Third-Degree Continuous Cohomology of Simple Lie Groups 2018 Carlos De la Cruz Mengual
+ On the Third-Degree Continuous Cohomology of Simple Lie Groups 2018 Carlos De la Cruz Mengual
+ On finite simple subgroups of the complex Lie group of type $E_8$ 1987 AM Arjeh Cohen
RL Griess
+ Sur la structure des groupes semi-simples réels 1939 W. Brian Barrett
+ Complex Lie Groups 2001
+ On finite simple subgroups of the complex Lie group of type 𝐸₈ 1987 Arjeh M. Cohen
Robert L. Griess
+ Simple exceptional groups of Lie type are determined by their character degrees 2011 Hung P. Tong-Viet
+ Simple exceptional groups of Lie type are determined by their character degrees 2011 Hung P. Tong‐Viet
+ The vanishing of cohomology associated to discrete subgroups of complex simple Lie groups 1982 Hans-Christoph Im Hof
Ernst A. Ruh
+ Les groupes simples déduits des algèbres de Lie simples complexes 1960 Jean Dieudonné
+ PDF Chat Simple exceptional groups of Lie type are determined by their character degrees 2011 Hung P. Tong-Viet
+ Cohomology of classifying spaces of complex Lie groups and related discrete groups 1984 Eric M. Friedlander
Guido Mislin
+ PDF Chat GROUPES DE LIE COMPLEXES ET FONCTIONS HOLOMORPHES 1985 Joji Kajiwara
Seiko Ohgai
Kwang Ho Shon
+ Simply connected coset complexes for rank 1 groups of Lie type 1994 Yoav Segev
+ Bases des représentations des groupes simples complexes 1991 Olivier Mathieu
+ A connected complex simple centerfree Lie group whose exponential function is not surjective. 1995 Michael Wüstner
+ Continuous cohomology of Lie groups and Lie algebras 1981 Joachim Erven
Bernd-Jürgen Falkowski
+ PDF Chat Involutions complexes et vecteurs sphériques associés pour les groupes de Lie nilpotents réels 2018 Bernard Magneron
+ PDF Chat A NOTE ON NON-CONNECTED COMPLEX LIE GROUPS 1973 Kagumi HONDA
Satoru YAMAGUCHI
+ Cohomology of compact Lie groups 2019 L.A. Visscher