Type: Article
Publication Date: 1978-01-01
Citations: 35
DOI: https://doi.org/10.24033/asens.1347
A simple Lie group G has a nontrivial continuous 2-cohomology group H 2 (G, R) (which is then 1-dimensional) if and oniy if thé symmetric space G/K admits a G-invariant complex structure.Explicit cocycles are constructed for thèse nontrivial cohomology classes.We aiso give some results for H 2 (G, Z) and H 2 (G, T).
Action | Title | Year | Authors |
---|---|---|---|
+ | Differential Geometry and Symmetric Spaces | 2001 |
Sigurđur Helgason |
+ PDF Chat | Algebraic Cohomology of Topological Groups | 1973 |
David Wigner |
+ PDF Chat | Curvature and Characteristic Classes | 1978 |
Johan L. Dupont |