Type: Book-Chapter
Publication Date: 2019-12-06
Citations: 15
DOI: https://doi.org/10.1090/gsm/203/11
Preface.- Overview.- Chapter 1: Foundation Material.- Results from Group Theory.- Quadratic Congruences.- Chebyshev Systems of Functions.- Chapter 2: The Fourier Transform.- A Special Class of Linear Operators.- Characters.- The Orthogonal Relations for Characters.- The Fourier Transform.- The Fourier Transform of Periodic Functions.- The Inverse Fourier Transform.- The Inversion Formula.- Matrices of the Fourier Transform.- Iterated Fourier Transform.- Is the Fourier Transform a Self-Adjoint Operator?.- The Convolutions Operator.- Banach Algebra.- The Uncertainty Principle.- The Tensor Decomposition.- The Tensor Decomposition of Vector Spaces.- The Fourier Transform and Isometries.- Reduction to Finite Cyclic Groups.- Symmetric and Antisymmetric Functions.- Eigenvalues and Eigenvectors.- Spectrak Theorem.- Ergodic Theorem.- Multiplicities of Eigenvalues.- The Quantum Fourier Transform.- Chapter 3: Quadratic Sums.- 1. The Number G_n(1).- Reduction Formulas.
Action | Title | Year | Authors |
---|