Learning with a Wasserstein Loss

Type: Preprint

Publication Date: 2015-01-01

Citations: 288

DOI: https://doi.org/10.48550/arxiv.1506.05439

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Learning with a Wasserstein Loss 2015 Charlie Frogner
Chiyuan Zhang
Hossein Mobahi
Mauricio Araya‐Polo
Tomaso Poggio
+ Minimal Learning Machine for Multi-Label Learning 2023 Joonas Hämäläinen
Amauri H. Souza
César Mattos
João P. P. Gomes
Tommi Kärkkäinen
+ sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel Classification 2021 G. F. Benedict
Vincent Koops
Daan Odijk
Maarten de Rijke
+ PDF Chat Nearest labelset using double distances for multi-label classification 2019 Hyukjun Gweon
Matthias Schonlau
Stefan Steiner
+ PDF Chat Learning Wasserstein Embeddings 2018 Nicolas Courty
Rémi Flamary
Mélanie Ducoffe
+ PDF Chat Multi-Label Learning with Stronger Consistency Guarantees 2024 Anqi Mao
Mehryar Mohri
Yutao Zhong
+ Multi-label Ranking: Mining Multi-label and Label Ranking Data 2021 Lihi Dery
+ Nearest Labelset Using Double Distances for Multi-label Classification 2017 Hyukjun Gweon
Matthias Schonlau
Stefan Steiner
+ Nearest Labelset Using Double Distances for Multi-label Classification 2017 Hyukjun Gweon
Matthias Schonlau
Stefan Steiner
+ PDF Chat Similarity-Dissimilarity Loss with Supervised Contrastive Learning for Multi-label Classification 2024 Guangming Huang
Yunfei Long
Cunjin Luo
Sheng Liu
+ PDF Chat SPL-MLL: Selecting Predictable Landmarks for Multi-label Learning 2020 Junbing Li
Changqing Zhang
Pengfei Zhu
Baoyuan Wu
Lei Chen
Qinghua Hu
+ PDF Chat Learning from Noisy Label Distributions 2017 Yuya Yoshikawa
+ Supervised Tree-Wasserstein Distance 2021 Yuki Takezawa
Ryoma Sato
Makoto Yamada
+ Supervised Tree-Wasserstein Distance 2021 Yuki Takezawa
Ryoma Sato
Makoto Yamada
+ Multi-class Classification without Multi-class Labels 2019 Yen-Chang Hsu
Zhaoyang Lv
Joel Schlosser
Phillip Odom
Zsolt Kira
+ An Exploration into why Output Regularization Mitigates Label Noise. 2021 Neta Shoham
Tomer Avidor
Nadav Israel
+ PDF Chat Dynamics-aware loss for learning with label noise 2023 Xiu-Chuan Li
Xiaobo Xia
Fei Zhu
Tongliang Liu
Xu-Yao Zhang
Cheng‐Lin Liu
+ Approximating 1-Wasserstein Distance with Trees 2022 Makoto Yamada
Yuki Takezawa
Ryoma Sato
Han Bao
Zornitsa Kozareva
Sujith Ravi
+ PDF Chat A Consistent Lebesgue Measure for Multi-label Learning 2024 Kaan Demir
Bach Hoai Nguyen
Bing Xue
Jun Zhang
+ An Exploration into why Output Regularization Mitigates Label Noise 2021 Neta Shoham
Tomer Avidor
Nadav Israel