Type: Article
Publication Date: 2015-01-01
Citations: 20
DOI: https://doi.org/10.1214/ejp.v20-4177
We consider an infinite system of Brownian motions which interact through a given Brownian motion being reflected from its left neighbor. Earlier we studied this system for deterministic periodic initial configurations. In this contribution we consider initial configurations distributed according to a Poisson point process with constant intensity, which makes the process space-time stationary. We prove convergence to the Airy process for stationary the case. As a byproduct we obtain a novel representation of the finite-dimensional distributions of this process. Our method differs from the one used for the TASEP and the KPZ equation by removing the initial step only after the limit $t\to\infty$. This leads to a new universal cross-over process.