The Weyl algebra and its friends: a survey

Authors

Abstract

Abstract We survey several generalizations of the Weyl algebra including generalized Weyl algebras, twisted generalized Weyl algebras, quantized Weyl algebras, and Bell-Rogalski algebras. Attention is paid to ring-theoretic properties, representation theory, and invariant theory.

Locations

  • SĂŁo Paulo Journal of Mathematical Sciences
  • arXiv (Cornell University)

Ask a Question About This Paper

Summary

The Weyl algebra, a foundational object in non-commutative algebra with deep ties to quantum mechanics and Lie theory, serves as the genesis for a rich family of generalized algebraic structures. This survey illuminates the profound significance of these “friends” of the Weyl algebra, demonstrating how they unify and broaden the scope of non-commutative ring theory and representation theory.

The central innovation explored is the Generalized Weyl Algebra (GWA), initially formalized by Bavula. This framework provides a common construction for a vast array of important non-commutative rings, including primitive quotients of universal enveloping algebras of Lie algebras (such as \(U(sl_2)\)), deformations of type A Kleinian singularities, and even the classical Weyl algebra itself. Further extending this paradigm are the Quantized Weyl Algebras (QWA), which incorporate quantum group theory and Hecke symmetries, the even more general Twisted Generalized Weyl Algebras (TGWA), developed by Mazorchuk and Turowska, which introduce additional twisting parameters, and Bell-Rogalski (BR) Algebras, arising from the study of non-commutative blowing up, which encompass GWAs as a special case.

The significance lies in the systematic and unified study of these diverse algebras. By providing a common language and construction, the survey facilitates the generalization of key properties from the well-understood Weyl algebra to this broader class. These properties fall primarily into three categories:

  1. Ring-Theoretic Properties: The survey details how fundamental properties like being a domain, simplicity, Noetherian property, Gelfand-Kirillov dimension, and global dimension behave across these generalizations. Criteria for simplicity, for instance, are meticulously laid out for each type, often generalizing known results for \(U(sl_2)\) or the first Weyl algebra. The Noetherian property, a cornerstone of ring theory, is often derived from the concept of iterated Ore extensions, a crucial prior ingredient.

  2. Representation Theory: The study of weight modules, particularly for rank-one GWAs, is a highlight. These modules, reminiscent of weight modules for Lie algebras, are classified based on “breaks” in the underlying ring, providing a unified approach to understanding their simple and indecomposable structures. Morita equivalence, which classifies rings with equivalent module categories, is also discussed, tracing its development from \(W_1(k)\) to these generalizations.

  3. Invariant Theory: The survey delves into the automorphism groups of these algebras and the structure of their fixed rings under group actions. A striking result is that invariant rings of the Weyl algebra itself are generally not isomorphic to the Weyl algebra, contrasting with commutative polynomial rings. This line of inquiry is extended to GWAs, examining conditions under which fixed rings retain the structure of a generalized Weyl algebra.

The main prior ingredients for this field of study are manifold:
* The classical Weyl algebra (\(W_n(k)\)): Its definition, properties, and historical context (Born, Dirac, Heisenberg, Dixmier) are the absolute starting point.
* Lie Algebras and their Enveloping Algebras: The enveloping algebra of \(sl_2\) and its primitive quotients (Dixmier, Smith, Stafford) provided early examples of what would later be understood as GWAs.
* Non-commutative Ring Theory: Concepts such as Noetherian rings, domains, simple rings, Gelfand-Kirillov dimension, global dimension, Ore extensions (Jordan), and skew polynomial rings are fundamental tools and frameworks.
* Algebraic Geometry: Specifically, the theory of Kleinian singularities (Hodges) provided geometric motivation for some of the earliest generalizations. Non-commutative algebraic geometry (Artin, Zhang) provides a categorical lens for understanding graded modules.
* Quantum Groups and Hopf Algebras: These provide the necessary machinery for defining and studying quantized versions of these algebras and their symmetries.
* Specific foundational constructions: Joseph’s algebras \(J(a)\), Bavula’s Generalized Weyl Algebras, Giaquinto and Zhang’s Quantized Weyl Algebras, Mazorchuk and Turowska’s Twisted Generalized Weyl Algebras, and Bell and Rogalski’s algebras each represent significant prior innovations that this survey masterfully synthesizes.

In essence, this survey demonstrates how a specific, celebrated object – the Weyl algebra – has inspired a sophisticated and interconnected web of generalizations, allowing for the comprehensive analysis of their structural properties and representations through unified theoretical frameworks.

We survey several generalizations of the Weyl algebra including generalized Weyl algebras, twisted generalized Weyl algebras, quantized Weyl algebras, and Bell-Rogalski algebras. Attention is paid to ring-theoretic properties, representation theory, … We survey several generalizations of the Weyl algebra including generalized Weyl algebras, twisted generalized Weyl algebras, quantized Weyl algebras, and Bell-Rogalski algebras. Attention is paid to ring-theoretic properties, representation theory, and invariant theory.
Given a generalized Weyl algebra A of degree 1 with the base algebra D, we prove that the difference of the Gelfand–Kirillov dimension of A and that of D could … Given a generalized Weyl algebra A of degree 1 with the base algebra D, we prove that the difference of the Gelfand–Kirillov dimension of A and that of D could be any positive integer or infinity. Under mild conditions, this difference is exactly 1. As applications, we calculate the Gelfand–Kirillov dimensions of various algebras of interest, including the (quantized) Weyl algebras, ambiskew polynomial rings, noetherian (generalized) down-up algebras, iterated Ore extensions, quantum Heisenberg algebras, universal enveloping algebras of Lie algebras, quantum GWAs, etc.
Twisted generalized Weyl algebras (TGWAs) are a large family of algebras that includes several algebras of interest for ring theory and representation theory, such as Weyl algebras, primitive quotients of … Twisted generalized Weyl algebras (TGWAs) are a large family of algebras that includes several algebras of interest for ring theory and representation theory, such as Weyl algebras, primitive quotients of $U(\mathfrak{sl}_2)$, and multiparameter quantized Weyl algebras. In this work, we study invariants of TGWAs under diagonal automorphisms. Under certain conditions, we are able to show that the fixed ring of a TGWA by such an automorphism is again a TGWA. In particular, this is true for $\Bbbk$-finitistic TGWAs of type $(A_1)^n$ and $A_2$. We apply this theorem to study properties of the fixed ring, such as the noetherian property and simplicity. We also look at the behavior of simple weight modules for TGWAs when restricted to the action of the fixed ring. As an auxiliary result, in order to study invariants of tensor products of TGWAs, we prove that the class of regular, $μ$-consistent TGWAs is closed under tensor products.
We study graded twisted tensor products and graded twists of twisted generalized Weyl algebras (TGWAs). We show that the class of TGWAs is closed under these operations assuming mild hypotheses. … We study graded twisted tensor products and graded twists of twisted generalized Weyl algebras (TGWAs). We show that the class of TGWAs is closed under these operations assuming mild hypotheses. We generalize a result on cocycle equivalence amongst multiparameter quantized Weyl algebras to the setting of TGWAs. As another application we prove that certain TGWAs of type $A_2$ are noetherian.
Generalized Weyl algebras (GWAs) appear in diverse areas of mathematics including mathematical physics, noncommutative algebra, and representation theory. We study the invariants of quantum GWAs under finite order automorphisms. We … Generalized Weyl algebras (GWAs) appear in diverse areas of mathematics including mathematical physics, noncommutative algebra, and representation theory. We study the invariants of quantum GWAs under finite order automorphisms. We extend a theorem of Jordan and Wells and apply it to determine the fixed ring of quantum GWAs under diagonal automorphisms. We further study properties of the fixed rings including global dimension, the Calabi–Yau property, rigidity, and simplicity.
Not Available. Not Available.
We prove that any twisted generalized Weyl algebra satisfying certain consistency conditions can be embedded into a crossed product. We also introduce a new family of twisted generalized Weyl algebras, … We prove that any twisted generalized Weyl algebra satisfying certain consistency conditions can be embedded into a crossed product. We also introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's $q$-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs up to isomorphism over a class of twisted generalized Weyl algebras which includes the multiparameter twisted Weyl algebras.
We classify the derivations of degree-one generalized Weyl algebras over a univariate Laurent polynomial ring. In particular, our results cover the Weyl-Hayashi algebra, a quantization of the first Weyl algebra … We classify the derivations of degree-one generalized Weyl algebras over a univariate Laurent polynomial ring. In particular, our results cover the Weyl-Hayashi algebra, a quantization of the first Weyl algebra arising as a primitive factor algebra of $U_q^+(\mathfrak{so}_5)$, and a family of algebras which localize to the group algebra of the infinite group with generators $x$ and $y$, subject to the relation $xy = y^{-1}x.$
Object: to present some of the history and properties of Weyl algebras in mathematics and physics Object: to present some of the history and properties of Weyl algebras in mathematics and physics
Definitions and examples Integrals and semisimplicity Freeness over subalgebras Action of finite-dimensional Hopf algebras and smash products Coradicals and filtrations Inner actions Crossed products Galois extensions Duality New constructions from … Definitions and examples Integrals and semisimplicity Freeness over subalgebras Action of finite-dimensional Hopf algebras and smash products Coradicals and filtrations Inner actions Crossed products Galois extensions Duality New constructions from quantum groups Some quantum groups.
We present solutions to isomorphism problems for various generalized Weyl algebras, including deformations of type-A Kleinian singularities and the algebras similar to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis German … We present solutions to isomorphism problems for various generalized Weyl algebras, including deformations of type-A Kleinian singularities and the algebras similar to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis German s German l Subscript 2 Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">s</mml:mi> <mml:mi mathvariant="fraktur">l</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(\mathfrak {sl}_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> introduced by S. P. Smith. For the former, we generalize results of Dixmier on the first Weyl algebra and the minimal primitive factors of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis German s German l Subscript 2 Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="fraktur">s</mml:mi> <mml:mi mathvariant="fraktur">l</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(\mathfrak {sl}_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by finding sets of generators for the group of automorphisms.
We consider a series of questions that grew out of determining when two quantum planes are isomorphic.In particular, we consider a similar question for quantum matrix algebras and certain ambiskew … We consider a series of questions that grew out of determining when two quantum planes are isomorphic.In particular, we consider a similar question for quantum matrix algebras and certain ambiskew polynomial rings.Additionally, we modify a result by Alev and Dumas to show that two quantum Weyl algebras are isomorphic if and only if their parameters are equal or inverses of each other.
Articles on the history of mathematics can be written from many dierent perspectives. Some aim to survey a more or less wide landscape, and require the observer to watch from … Articles on the history of mathematics can be written from many dierent perspectives. Some aim to survey a more or less wide landscape, and require the observer to watch from afar as theories develop and movements are born or become obsolete. At the other extreme, there are those that try to shed light on the history of particular theorems and on the people who created them. This article belongs to this second category. It is an attempt to explain Goldie’s theorems on quotient rings in the context of the life and times of the man who discovered them. 1. Fractions Fractions are at least as old as civilisation. The Egyptian scribes of 3,000 years ago were very skilful in their manipulation as attested by many ancient papyri. To the Egyptians and Mesopotamians, fractions were just tools to find the correct answer to practical problems in land surveying and accounting. However, the situation changed dramatically in Ancient Greece. To the Greek philosophers, number meant positive integer, and 1 was ‘the unity’, and as such, had to be indivisible. So how could ‘half’ be a number, since ‘half the unity’ did not make sense? Possibly as a consequence of that, the Greek mathematicians thought of fractions in terms of ratios of integers, rather than numbers. After the demise of Greek civilisation, mathematicians reverted to the more prosaic view that fractions were numbers. Indeed, for the next thousand years everyone seemed happy to compute with all sorts of ‘numbers’ without worrying much about what a number was really supposed to be. It was the need for a sound foundation for the infinitesimal calculus that put mathematicians face to face with the nature of numbers. The movement began in the 18th century, but its first fruits were only reaped in the 19th century in the movement that became known as the arithmetization of analysis. In short, mathematicians felt quite sure that they knew their integers very well; so they thought that by constructing the real numbers in terms of positive integers they would place the latter in a sure foundation. The most extreme version of this credo
Ce travail est consacré aux groupes d’automorphismes de certaines algebres quantiques de dimension 2 ou 3. Dans la théorie classique des algebres enveloppantes, si désigne l’algèbre de Lie de Heisenberg … Ce travail est consacré aux groupes d’automorphismes de certaines algebres quantiques de dimension 2 ou 3. Dans la théorie classique des algebres enveloppantes, si désigne l’algèbre de Lie de Heisenberg de dimension 3, U ( ) admet l’algèbre de Weyl A 1 comme seul quotient primitif de dimension 2, avec les propriétés suivantes: d’ une part tout automorphisme de A 1 se relève en un automor-phisme de U ( ), d’autre part U ( ) admet des automorphismes non modérés (cf. [A1], [Di1], [ML]). On retrouve la même situation pour les quotients primitifs minimaux de U(sl(2) ) paramétrés par C (cf. [Di2], [Jo]). En outre, dans ce cas, on dispose des plongements de Conze de ces quotients dans A 1 (cf. [Di2], [Co], [Ro]); bien que les groupes d’automorphismes soient comparables, la restriction correspondant à un tel plongement est seulement définie sur le sous-groupe des automorphismes triangulaires de A 1 (cf. annexe).
For a class of generalized Weyl algebras which includes the Weyl algebras An a criterion is given as to when the category of indecomposable weight and generalized weight modules with … For a class of generalized Weyl algebras which includes the Weyl algebras An a criterion is given as to when the category of indecomposable weight and generalized weight modules with supports from a fixed orbit is tame. In tame cases indecomposable modules are described.
In this paper we will study the homological properties of the enveloping algebra U = U ( Sl 2 (ℂ)), with particular reference to the homological dimension of simple U … In this paper we will study the homological properties of the enveloping algebra U = U ( Sl 2 (ℂ)), with particular reference to the homological dimension of simple U -modules and the global dimension of the primitive factor rings of U .
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A equals upper A left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">A = A(k)</mml:annotation> </mml:semantics> </mml:math> … Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A equals upper A left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">A = A(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the first Weyl algebra over an infinite field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be any noncyclic, projective right ideal of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S equals upper E n d left-parenthesis upper P right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>=</mml:mo> <mml:mi>End</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>P</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">S = \operatorname {End} (P)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that, as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebras, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S neither-approximately-nor-actually-equals upper A"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>≇</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">S\not \cong A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In contrast, there exists a noncyclic, projective right ideal <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q"> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding="application/x-tex">Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S approximately-equals upper E n d left-parenthesis upper Q right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:mi>End</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Q</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">S \cong \operatorname {End} (Q)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Thus, despite the fact that they are Morita equivalent, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> have surprisingly different properties. For example, under the canonical maps, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A u t Subscript k Baseline left-parenthesis upper A right-parenthesis approximately-equals upper P i c Subscript k Baseline left-parenthesis upper A right-parenthesis approximately-equals upper P i c Subscript k Baseline left-parenthesis upper S right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Aut</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Pic</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Pic</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\operatorname {Aut} _k}(A) \cong {\operatorname {Pic} _k}(A) \cong {\operatorname {Pic} _k}(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In contrast, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A u t Subscript k Baseline left-parenthesis upper S right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Aut</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\operatorname {Aut} _k}(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has infinite index in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P i c Subscript k Baseline left-parenthesis upper S right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>Pic</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\operatorname {Pic} _k}(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Rings of invariants are identified for some automorphisms θ of certain iterated skew polynomial rings R , including the enveloping algebra of sl 2 ( k ), the Weyl algebra … Rings of invariants are identified for some automorphisms θ of certain iterated skew polynomial rings R , including the enveloping algebra of sl 2 ( k ), the Weyl algebra A 1 and their quantizations. We investigate how finite-dimensional simple R -modules split over the ring of invariants R θ and how finite-dimensional simple R θ -modules extend to R .