On Product Schur Triples in the Integers

Type: Article
Publication Date: 2025-05-09
Citations: 0
DOI: https://doi.org/10.1137/24m1632875

Locations

  • SIAM Journal on Discrete Mathematics
  • arXiv (Cornell University)

Ask a Question About This Paper

Summary

This paper investigates Ramsey-type problems for “product Schur triples” – ordered triples of positive integers (a,b,c) such that ab=c – in analogy to the well-studied (additive) Schur triples where a+b=c.

Significance:
The work significantly extends classical Ramsey theory on integers, which traditionally focuses on linear equations, to a multiplicative setting. Schur’s theorem (1917) guarantees a monochromatic solution to a+b=c in any finite coloring of [n] (for n large enough). This paper pioneers a systematic study of the corresponding questions for ab=c:
1. How large must a subset of [2,n] be to guarantee a monochromatic product Schur triple under any k-coloring?
2. What is the minimum number of monochromatic product Schur triples in any k-coloring of [2,n]?
3. What is the probability threshold for a random subset of [2,n] to contain a product Schur triple?
4. How densely must a pre-existing set be perturbed with random elements to ensure a monochromatic product Schur triple?
The findings are particularly noteworthy as they provide some of the first results for nonlinear equations in random and randomly-perturbed settings, opening up new avenues in combinatorial number theory.

Key Innovations and Main Results:

  1. Deterministic Setting - Size of Product Schur-Ramsey Sets:

    • The paper defines g*(k,n) as the minimum size s such that any subset A of [2,n] of size s must contain a monochromatic product Schur triple under any k-coloring.
    • Innovation: It links g*(k,n) to both the classical Schur number S(k) and the “double-sum Schur number” S'(k) (the minimum m such that any k-coloring of [m] has a monochromatic solution to a+b=c or a+b=c-1, previously studied by Abbott and Hanson).
    • Result (Theorem 1.1): Provides bounds: n - n^(1/S'(k)) <= g*(k,n) <= n - (1-epsilon)n^(1/S(k)). These bounds are nearly tight for k=1,2,3 where S'(k)=S(k).
  2. Deterministic Setting - Counting Monochromatic Triples:

    • Innovation: Addresses the quantitative question of how many monochromatic product Schur triples must exist.
    • Result (Theorem 1.2): Any 2-coloring of [2,n] contains at least n^(1/3 - epsilon) monochromatic product Schur triples. (The authors note a concurrent, stronger result by Aragão, Chapman, Ortega, and Souza achieving n^(1/2) polylog(n)).
  3. Random Setting - Threshold for Existence:

    • Innovation: Determines the threshold probability p for a random subset [2,n]_p (where each element is chosen with probability p) to contain a product Schur triple. This is a novel contribution for nonlinear equations.
    • Result (Theorem 1.3): The threshold is (n log n)^(-1/3). This contrasts with the n^(-2/3) threshold for additive Schur triples.
  4. Randomly Perturbed Setting - Threshold for Existence:

    • Innovation: Studies the scenario where a dense deterministic set C_n (of size (1-alpha(n))n) is augmented by a random set [2,n]_p. The goal is to find the threshold p_alpha for C_n U [2,n]_p to contain a product Schur triple.
    • Result (Theorem 1.4 & 1.5):
      • For a specific range of initial densities alpha (decaying slightly faster than (log n)^(-delta), where delta ≈ 0.086 is related to Ford’s constant on the distribution of divisors), the threshold p_alpha(n) is n^(-1/2 + o(1)).
      • More generally, the paper provides bounds for p_alpha(n) that interpolate between the purely random case (roughly n^(-1/3)) and the dense perturbed case (n^(-1/2)), depending on the initial density alpha. The analysis involves functions f(alpha) and beta(alpha) relating alpha to exponents in the threshold.

Main Prior Ingredients Needed:

  1. Schur’s Theorem and Schur Numbers (S(k)): The foundational result stating that for any k, [S(k)] is the smallest interval [N] such that any k-coloring of [N] contains a monochromatic solution to a+b=c. The concept and bounds on S(k) are central.
  2. Abbott and Wang’s Problem: Their work on g(k,n), the size of the largest subset of [n] that avoids a monochromatic a+b=c under k-coloring, provides the template for defining g*(k,n).
  3. Double-Sum Schur Numbers (S’(k)): Introduced by Abbott and Hanson in the context of “strongly sum-free sets,” these numbers naturally appear in the lower bounds for g*(k,n).
  4. Probabilistic Method in Combinatorics: Techniques like the first and second moment methods, Chernoff bounds, and Chebyshev’s inequality are used for analyzing random sets.
  5. Theory of Threshold Functions for Random Structures: The concept of a threshold probability for a monotone property (Bollobás and Thomason).
  6. Results on Divisor Functions: Classical bounds on the number of divisors of an integer (e.g., Wigert’s result d(m) <= m^(O(1/log log m))) are used in counting arguments.
  7. Ford’s Work on Integers with Divisors in an Interval: Ford’s results on the count H(n,I) of integers up to n having a divisor in an interval I are crucial for the analysis in the randomly perturbed setting, leading to the appearance of the constant delta.
  8. Ramsey Theory in Randomly Perturbed Sets: Prior work by Aigner-Horev and Person on monochromatic additive Schur triples in randomly perturbed dense sets of integers serves as inspiration.
Schur's theorem states that in any $k$-colouring of the set of integers $[n]$ there is a monochromatic solution to $a+b=c$, provided $n$ is sufficiently large. Abbott and Wang studied the … Schur's theorem states that in any $k$-colouring of the set of integers $[n]$ there is a monochromatic solution to $a+b=c$, provided $n$ is sufficiently large. Abbott and Wang studied the size of the largest subset of $[n]$ such that there is a $k$-colouring avoiding a monochromatic $a+b=c$. In other directions, the minimum number of $a+b=c$ in $k$-colourings of $[n]$ and the probability threshold in random subsets of $[n]$ for the property of having a monochromatic $a+b=c$ in any $k$-colouring were investigated. In this paper, we study natural generalisations of these streams to products $ab=c$, in a deterministic, random, and randomly perturbed environments.
Abstract Let p *( n ) denote the number of product partitions, that is, the number of ways of expressing a natural number n &gt; 1 as the product of … Abstract Let p *( n ) denote the number of product partitions, that is, the number of ways of expressing a natural number n &gt; 1 as the product of positive integers ≥ 2, the order of the factors in the product being irrelevant, with p *(1) = 1. For any integer if d is an i th power, and = 1, otherwise, and let . Using a suitable generating function for p *( n ) we prove that
In this paper, it is shown that $ (mathcal{V}, mathfrak{X}) $ is a Schur pair if and only if the Baer-invariant of an $mathfrak{X}$-group with respect to $ mathcal{V}$ is … In this paper, it is shown that $ (mathcal{V}, mathfrak{X}) $ is a Schur pair if and only if the Baer-invariant of an $mathfrak{X}$-group with respect to $ mathcal{V}$ is an $mathfrak{X}$-group. Also, it is proved that a locally $mathfrak{X}$ class inherited the Schur  pair property of , whenever $mathfrak{X}$ is closed with respect to forming subgroup, images and extensions of its members. Subsequently,  many interesting predicates  about some generalizations of Schur's theorem and Schur multiplier of groups will be concluded.
1. Diophantine equations involving products of integers have been investigated by many mathematicians.Among these are ErdSs [1], L. J. Mordell [4], but these are the equations in two variables.In this 1. Diophantine equations involving products of integers have been investigated by many mathematicians.Among these are ErdSs [1], L. J. Mordell [4], but these are the equations in two variables.In this
1. Diophantine equations involving products of integers have been investigated by many mathematicians.Among these are ErdSs [1], L. J. Mordell [4], but these are the equations in two variables.In this 1. Diophantine equations involving products of integers have been investigated by many mathematicians.Among these are ErdSs [1], L. J. Mordell [4], but these are the equations in two variables.In this
We consider the equation $\mathcal{E}: x_1+ \cdots+x_{k-1} =x_{k}$. Let $k$ and $r$ be positive integers such that $r|k$. The constant $S_{\mathfrak{z},2}(k;r)$ is defined to be the least positive integer $t$ … We consider the equation $\mathcal{E}: x_1+ \cdots+x_{k-1} =x_{k}$. Let $k$ and $r$ be positive integers such that $r|k$. The constant $S_{\mathfrak{z},2}(k;r)$ is defined to be the least positive integer $t$ such that for any coloring $\chi: [1, t] \to \{0, 1\}$, there exists a solution $(x_1, x_2, \ldots, x_k)$ to the equation $\mathcal{E}$ satisfying $\displaystyle \sum_{i=1}^k\chi(x_i) \equiv 0\pmod{r}$. In \cite{aaron}, there was an open question regarding the exact value of $S_{\mathfrak{z}, 2}(k, 4)$. In this article, we solve this problem and we also solve for $r = 5$ and $6$. In general, we calculate the exact values of $S_{\mathfrak{z}, 2}(k, r)$ for all integers $k\geq r^2-2r$ and $k = 2r$.
We prove astonishing identities generated by compositions of positive integers. In passing, we obtain two new identities for Stirling numbers of the first kind. In the two last sections we … We prove astonishing identities generated by compositions of positive integers. In passing, we obtain two new identities for Stirling numbers of the first kind. In the two last sections we clarify an algebraic sense of these identities and obtain several other structural close identities.
For every odd prime p, we exhibit families of irreducible Artin representations τ with the property that for every elliptic curve E the order of the zero of the twisted … For every odd prime p, we exhibit families of irreducible Artin representations τ with the property that for every elliptic curve E the order of the zero of the twisted L-function L ( E , τ , s ) at s = 1 must be a multiple of p. Analogously, the multiplicity of τ in the Selmer group of E must also be divisible by p. We give further examples where τ can moreover be twisted by any character that factors through the p-cyclotomic extension, and examples where the L-functions are those of twists of certain Hilbert modular forms by Dirichlet charaters. These results are conjectural, and rely on a standard generalisation of the Birch–Swinnerton-Dyer conjecture. Our main tool is the theory of Schur indices from representation theory.
Let represent the equation x1 + x2 + ⋅⋅⋅ + xt − 1 = xt. For k ≥ 1, 0 ≤ i ≤ k − 1, and ti ≥ 3, … Let represent the equation x1 + x2 + ⋅⋅⋅ + xt − 1 = xt. For k ≥ 1, 0 ≤ i ≤ k − 1, and ti ≥ 3, the generalized Schur number S(k; t0, t1, …, tk − 1) is the least positive integer m such that for every k-coloring of {1, 2, …, m}, there exists an i ∈ {0, 1, …, k − 1} such that there exists a solution to that is monochromatic in color i. In this article, we report 26 previously unknown values of S(k; t0, t1, …, tk − 1) and conjecture that for 4 ≤ t0 ≤ t1 ≤ t2, S(3; t0, t1, t2) = t2t1t0 − t2t1 − t2 − 1.
We prove the statement of the title, thereby solving a $100 problem of Ron Graham. This was solved independently by Tomasz Schoen. We prove the statement of the title, thereby solving a $100 problem of Ron Graham. This was solved independently by Tomasz Schoen.
Abstract This paper investigates the number of random edges required to add to an arbitrary dense graph in order to make the resulting graph hamiltonian with high probability. Adding Θ(n) … Abstract This paper investigates the number of random edges required to add to an arbitrary dense graph in order to make the resulting graph hamiltonian with high probability. Adding Θ(n) random edges is both necessary and sufficient to ensure this for all such dense graphs. If, however, the original graph contains no large independent set, then many fewer random edges are required. We prove a similar result for directed graphs. © 2002 Wiley Periodicals, Inc. Random Struct. Alg., 22: 33–42, 2003
A set<italic>S</italic>of integers is said to be sum-free if<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a comma b element-of upper S"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo>∈<!-- ∈ --></mml:mo><mml:mi>S</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">a,b \in S</mml:annotation></mml:semantics></mml:math></inline-formula>implies<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a plus b not-an-element-of upper S"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mo>∉<!-- … A set<italic>S</italic>of integers is said to be sum-free if<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a comma b element-of upper S"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo>∈<!-- ∈ --></mml:mo><mml:mi>S</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">a,b \in S</mml:annotation></mml:semantics></mml:math></inline-formula>implies<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a plus b not-an-element-of upper S"><mml:semantics><mml:mrow><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:mo>∉<!-- ∉ --></mml:mo><mml:mi>S</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">a + b \notin S</mml:annotation></mml:semantics></mml:math></inline-formula>. In this paper, we investigate two new problems on sum-free sets: (1) Let<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">f(k)</mml:annotation></mml:semantics></mml:math></inline-formula>denote the largest positive integer for which there exists a partition of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet 1 comma 2 comma ellipsis comma f left-parenthesis k right-parenthesis EndSet"><mml:semantics><mml:mrow><mml:mo fence="false" stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mo>…<!-- … --></mml:mo><mml:mo>,</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo fence="false" stretchy="false">}</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">\{ 1,2, \ldots ,f(k)\}</mml:annotation></mml:semantics></mml:math></inline-formula>into<italic>k</italic>sum-free sets, and let<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h left-parenthesis k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>h</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">h(k)</mml:annotation></mml:semantics></mml:math></inline-formula>denote the largest positive integer for which there exists a partition of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet 1 comma 2 comma ellipsis comma h left-parenthesis k right-parenthesis EndSet"><mml:semantics><mml:mrow><mml:mo fence="false" stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mo>…<!-- … --></mml:mo><mml:mo>,</mml:mo><mml:mi>h</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo fence="false" stretchy="false">}</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">\{ 1,2, \ldots ,h(k)\}</mml:annotation></mml:semantics></mml:math></inline-formula>into<italic>k</italic>sets which are sum-free<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mod h left-parenthesis k right-parenthesis plus 1"><mml:semantics><mml:mrow><mml:mo lspace="thickmathspace" rspace="thickmathspace">mod</mml:mo><mml:mi>h</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:annotation encoding="application/x-tex">\bmod h(k) + 1</mml:annotation></mml:semantics></mml:math></inline-formula>. We obtain evidence to support the conjecture that<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis k right-parenthesis equals h left-parenthesis k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>h</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">f(k) = h(k)</mml:annotation></mml:semantics></mml:math></inline-formula>for all<italic>k</italic>. (2) Let<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>g</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">g(n,k)</mml:annotation></mml:semantics></mml:math></inline-formula>denote the cardinality of a largest subset of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet 1 comma 2 comma ellipsis comma n EndSet"><mml:semantics><mml:mrow><mml:mo fence="false" stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mo>…<!-- … --></mml:mo><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo fence="false" stretchy="false">}</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">\{ 1,2, \ldots ,n\}</mml:annotation></mml:semantics></mml:math></inline-formula>that can be partitioned into<italic>k</italic>sum-free sets. We obtain upper and lower bounds for<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma k right-parenthesis"><mml:semantics><mml:mrow><mml:mi>g</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">g(n,k)</mml:annotation></mml:semantics></mml:math></inline-formula>. We also show that<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma 1 right-parenthesis equals left-bracket left-parenthesis n plus 1 right-parenthesis slash 2 right-bracket"><mml:semantics><mml:mrow><mml:mi>g</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mn>2</mml:mn><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">g(n,1) = [(n + 1)/2]</mml:annotation></mml:semantics></mml:math></inline-formula>and indicate how one may show that for all<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n less-than-or-slanted-equals 54 comma g left-parenthesis n comma 2 right-parenthesis equals n minus left-bracket n slash 5 right-bracket"><mml:semantics><mml:mrow><mml:mi>n</mml:mi><mml:mo>⩽<!-- ⩽ --></mml:mo><mml:mn>54</mml:mn><mml:mo>,</mml:mo><mml:mi>g</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>n</mml:mi><mml:mo>−<!-- − --></mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mi>n</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mn>5</mml:mn><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">n \leqslant 54,g(n,2) = n - [n/5]</mml:annotation></mml:semantics></mml:math></inline-formula>.
A set <italic>S</italic> of integers is said to be sum-free if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a comma b element-of upper S"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation … A set <italic>S</italic> of integers is said to be sum-free if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a comma b element-of upper S"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">a,b \in S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> implies <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a plus b not-an-element-of upper S"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>+</mml:mo> <mml:mi>b</mml:mi> <mml:mo>∉</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">a + b \notin S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(n,k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the cardinality of a largest subset of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartSet 1 comma 2 comma ellipsis comma n EndSet"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\{ 1,2, \ldots ,n\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that can be partitioned into <italic>k</italic> sum-free sets. In this note we show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g left-parenthesis n comma 2 right-parenthesis equals n minus left-bracket n slash 5 right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mo stretchy="false">[</mml:mo> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>5</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">g(n,2) = n - [n/5]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
We determine the order of magnitude of H(x, y, z), the number of integers n ≤ x having a divisor in (y, z], for all x, y and z.We also … We determine the order of magnitude of H(x, y, z), the number of integers n ≤ x having a divisor in (y, z], for all x, y and z.We also study H r (x, y, z), the number of integers n ≤ x having exactly r divisors in (y, z].When r = 1 we establish the order of magnitude of H 1 (x, y, z) for all x, y, z satisfying z ≤ x 1/2-ε .For every r ≥ 2, C > 1 and ε > 0, we determine the order of magnitude of H r (x, y, z) uniformly for y large and y + y/(log y) log 4-1-ε ≤ z ≤ min(y C , x 1/2-ε ).As a consequence of these bounds, we settle a 1960 conjecture of Erdős and some conjectures of Tenenbaum.One key element of the proofs is a new result on the distribution of uniform order statistics.
Given a dense subset $A$ of the first $n$ positive integers, we provide a short proof showing that for $p=\omega(n^{-2/3}),$ the so-called randomly perturbed set $A \cup [n]_p$ a.a.s. has … Given a dense subset $A$ of the first $n$ positive integers, we provide a short proof showing that for $p=\omega(n^{-2/3}),$ the so-called randomly perturbed set $A \cup [n]_p$ a.a.s. has the property that any 2-coloring of it has a monochromatic Schur triple, i.e., a triple of the form $(a,b,a+b)$. This result is optimal since there are dense sets $A$, for which $A\cup [n]_p$ does not possess this property for $p=o(n^{-2/3})$.
A set A of integers is said to be Schur if any two-colouring of A results in monochromatic x,y and z with x+y=z. We study the following problem: how many … A set A of integers is said to be Schur if any two-colouring of A results in monochromatic x,y and z with x+y=z. We study the following problem: how many random integers from [n] need to be added to some A⊆[n] to ensure with high probability that the resulting set is Schur? Hu showed in 1980 that when |A|>⌈4n5⌉, no random integers are needed, as A is already guaranteed to be Schur. Recently, Aigner-Horev and Person showed that for any dense set of integers A⊆[n], adding ω(n1/3) random integers suffices, noting that this is optimal for sets A with |A|≤⌈n2⌉. We close the gap between these two results by showing that if A⊆[n] with |A|=⌈n2⌉+t<⌈4n5⌉, then adding ω(min{n1/3,nt−1}) random integers will with high probability result in a set that is Schur. Our result is optimal for all t, and we further provide a stability result showing that one needs far fewer random integers when A is not close in structure to the extremal examples. We also initiate the study of perturbing sparse sets of integers A by using algorithmic arguments and the theory of hypergraph containers to provide nontrivial upper and lower bounds.