Asaeda-Przytycki-Sikora, Manturov, and Gabrovšek extended Khovanov homology to links in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R double-struck upper P cubed"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> <mml:mi mathvariant="double-struck">P</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {RP}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We construct a Lee-type deformation of their theory, and use it to define an analogue of Rasmussen’s <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant in this setting. We show that the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s"> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding="application/x-tex">s</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant gives constraints on the genera of link cobordisms in the cylinder <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I times double-struck upper R double-struck upper P cubed"> <mml:semantics> <mml:mrow> <mml:mi>I</mml:mi> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> <mml:mi mathvariant="double-struck">P</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">I \times \mathbb {RP}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As an application, we give examples of freely <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-periodic knots in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S cubed"> <mml:semantics> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">S^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that are concordant but not standardly equivariantly concordant.