This study introduces a reliable semi-analytical approach for solving partial differential equations (PDEs) using a Modified New Iterative Method (MNIM). The primary aim is to enhance the efficiency of deriving closed-form solutions through an innovative formulation of an integral operator based on n-fold integration. This approach circumvents the conventional necessity of transforming PDEs into systems of multiple integral equations, thereby streamlining the solution process. The effectiveness of the MNIM is assessed through a series of examples, demonstrating its rapid convergence and superior performance in solving an array of evolution and partial differential equations. The results indicate that the MNIM not only simplifies the solution process but also significantly improves computational efficiency compared to traditional methods. This contribution holds substantial implications for both theoretical advancements in numerical analysis and practical applications across various fields where PDEs are prevalent, thereby facilitating more effective problem-solving strategies in complex systems.