Approximate identity and approximation properties of multidimensional Fourier algebras

Type: Preprint

Publication Date: 2025-01-08

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2501.04351

Abstract

For a locally compact group $G$, let $A^n(G)$ denote the multidimensional Fourier algebra given by $ \otimes_{n}^{eh} A(G).$ This work explores the approximation identity and operator amenability of the algebra $A^n(G)$. Further, we study the approximation properties (AP) and the concept of weak amenability of the multidimensional Fourier algebra.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The amenability constant of the Fourier algebra 2004 Volker Runde
+ Approximate and pseudo-amenability of the Fourier algebra 2007 F. Ghahramani
Ross Stokke
+ PDF Chat Operator weak amenability of the Fourier algebra 2002 Nico Spronk
+ Operator amenability of ultrapowers of the Fourier algebra 2017 Kyle Schlitt
+ $p$-Fourier algebras on compact groups 2014 Hun Hee Lee
Ebrahim Samei
Nico Spronk
+ $p$-Fourier algebras on compact groups 2014 Hun Hee Lee
Ebrahim Samei
Nico Spronk
+ PDF Chat Operator amenability of Fourierā€“Stieltjes algebras 2004 Volker Runde
Nico Spronk
+ PDF Chat Amenability properties of the central Fourier algebra of a compact group 2016 Mahmood Alaghmandan
Nico Spronk
+ PDF Chat Amenability and weak amenability of the Fourier algebra 2005 Brian Forrest
Volker Runde
+ PDF Chat Amenability properties of Fourier algebras and Fourier-Stieltjes algebras: a survey 2010 Nico Spronk
+ PDF Chat Spectral synthesis in multidimensional Fourier algebras 2025 Kanupriya Verma
N. Shravan Kumar
+ Topics in the notion of operator amenability and its generalizations with application in Fourier algebras 2019 Miad Makareh Shireh
+ PDF Chat $p$-Fourier algebras on compact groups 2018 Hun Hee Lee
Ebrahim Samei
Nico Spronk
+ Spectral Synthesis in the Multidimensional Fourier Algebra and the Varopolous Algebra for Compact Groups 2023 Kanupriya Verma
N. Shravan Kumar
+ PDF Chat Amenability, weak amenability and bounded approximate identities in multipliers of the Fourier algebra 2023 Brian Forrest
+ Amenability and weak amenability of the Fourier algebra 2002 Brian Forrest
Volker Runde
+ Similarity degree of Fourier algebras 2015 Hun Hee Lee
Ebrahim Samei
Nico Spronk
+ Weak amenability of Fourier algebras on compact groups 2008 Brian Forrest
Ebrahim Samei
Nico Spronk
+ Approximation properties for locally compact quantum groups 2016 Michael Brannan
+ Similarity degree of Fourier algebras 2015 Hun Hee Lee
Ebrahim Samei
Nico Spronk

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors