Type: Preprint
Publication Date: 2024-12-28
Citations: 0
DOI: https://doi.org/10.48550/arxiv.2412.20102
Let $\mathfrak{p}_{\mathbb{P}_r}(n)$ denote the number of partitions of $n$ into $r$-full primes. We use the Hardy-Littlewood circle method to find the asymptotic of $\mathfrak{p}_{\mathbb{P}_r}(n)$ as $n \to \infty$. This extends previous results in the literature of partitions into primes. We also show an analogue result involving convolutions of von Mangoldt functions and the zeros of the Riemann zeta-function. To handle the resulting non-principal major arcs we introduce the definition of strange functions and pseudo-differentiability.
Action | Title | Year | Authors |
---|
Action | Title | Year | Authors |
---|