Assessing Quantum and Classical Approaches to Combinatorial Optimization: Testing Quadratic Speed-ups for Heuristic Algorithms

Type: Preprint

Publication Date: 2024-12-17

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2412.13035

Abstract

Many recent investigations conclude, based on asymptotic complexity analyses, that quantum computers could accelerate combinatorial optimization (CO) tasks relative to a purely classical computer. However, asymptotic analysis alone cannot support a credible claim of quantum advantage. Here, we highlight the challenges involved in benchmarking quantum and classical heuristics for combinatorial optimization (CO), with a focus on the Sherrington-Kirkpatrick problem. Whereas hope remains that a quadratic quantum advantage is possible,our numerical analysis casts doubt on the idea that current methods exhibit any quantum advantage at all. This doubt arises because even a simple classical approach can match with quantum methods we investigated. We conclude that more careful numerical investigations are needed to evaluate the potential for quantum advantage in CO, and we give some possible future directions for such investigations.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat To quantum or not to quantum: towards algorithm selection in near-term quantum optimization 2020 Charles Moussa
Henri Calandra
Vedran Dunjko
+ Realistic Runtime Analysis for Quantum Simplex Computation 2023 Sabrina C. L. Ammann
Maximilian Hess
Debora Ramacciotti
SĂĄndor P. Fekete
Paulina L. A. Goedicke
David Groß
Andreea I. Lefterovici
Tobias J. Osborne
Michael Perk
Antonio Rotundo
+ PDF Chat Quantum speedup of branch-and-bound algorithms 2020 Ashley Montanaro
+ Progress toward favorable landscapes in quantum combinatorial optimization 2021 Juneseo Lee
Alicia B. Magann
Herschel Rabitz
Christian Arenz
+ PDF Chat Solving non-native combinatorial optimization problems using hybrid quantum-classical algorithms 2024 Jonathan Wurtz
Stefan Sack
Sheng-Tao Wang
+ Towards favorable landscapes in quantum combinatorial optimization 2021 Juneseo Lee
Alicia B. Magann
Herschel Rabitz
Christian Arenz
+ Solving Non-native Combinatorial Optimization Problems using Hybrid Quantum-classical Algorithms 2024 Jonathan Wurtz
Stefan Sack
Sheng-Tao Wang
+ PDF Chat Quantum Computing for Discrete Optimization: A Highlight of Three Technologies 2024 Alexey A. Bochkarev
Raoul Heese
Sven JĂ€ger
Philine Schiewe
Anita Schöbel
+ PDF Chat Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms 2024 Ishan Patwardhan
Akhil Akkapelli
+ PDF Chat Solving Combinatorial Optimization Problems with a Block Encoding Quantum Optimizer 2024 Adelina BĂ€rligea
Benedikt Poggel
J. Lorenz
+ A Review on Quantum Approximate Optimization Algorithm and its Variants 2023 Kostas Blekos
Dean Brand
Andrea Ceschini
Chiao-Hui Chou
Rui-Hao Li
Komal Pandya
Alessandro Summer
+ PDF Chat Towards Robust Benchmarking of Quantum Optimization Algorithms 2024 D. Bucher
Nico Kraus
Jonas Blenninger
Michael Lachner
Jonas Stein
Claudia Linnhoff‐Popien
+ Quantum Dueling: an Efficient Solution for Combinatorial Optimization 2023 Letian Tang
Haorui Wang
Zhengyang Li
Haozhan Tang
Chi Zhang
Shujin Li
+ Quantum Optimization: Potential, Challenges, and the Path Forward 2023 Amira Abbas
Andris Ambainis
Brandon Augustino
Andreas Baertschi
Harry Buhrman
Carleton Coffrin
G. Cortiana
Vedran Dunjko
Daniel J. Egger
Bruce G. Elmegreen
+ PDF Chat Approximating under the Influence of Quantum Noise and Compute Power 2024 Simon Thelen
Hila Safi
Wolfgang Mauerer
+ Quantum Optimization: Potential, Challenges, and the Path Forward 2023 Amira Abbas
Andris Ambainis
Brandon Augustino
Andreas BĂ€rtschi
Harry Buhrman
Carleton Coffrin
G. Cortiana
Vedran Dunjko
Daniel J. Egger
Bruce G. Elmegreen
+ PDF Chat Evidence that PUBO outperforms QUBO when solving continuous optimization problems with the QAOA 2023 Jonas Stein
Farbod Chamanian
Maximilian Zorn
Jonas NĂŒĂŸlein
Sebastian Zielinski
Michael Kölle
Claudia Linnhoff–Popien
+ Evidence that PUBO outperforms QUBO when solving continuous optimization problems with the QAOA 2023 Jonas Stein
Farbod Chamanian
Maximilian Zorn
Jonas NĂŒĂŸlein
Sebastian Zielinski
Michael Kölle
Claudia Linnhoff‐Popien
+ PDF Chat NP-hard but no longer hard to solve? Using quantum computing to tackle optimization problems 2023 Rhonda Au-Yeung
Nicholas Chancellor
Pascal Halffmann
+ NP-hard but no longer hard to solve? Using quantum computing to tackle optimization problems 2022 Rhonda Au-Yeung
Nicholas Chancellor
Pascal Halffmann

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors