What is YOLOv6? A Deep Insight into the Object Detection Model

Type: Preprint

Publication Date: 2024-12-17

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2412.13006

Abstract

This work explores the YOLOv6 object detection model in depth, concentrating on its design framework, optimization techniques, and detection capabilities. YOLOv6's core elements consist of the EfficientRep Backbone for robust feature extraction and the Rep-PAN Neck for seamless feature aggregation, ensuring high-performance object detection. Evaluated on the COCO dataset, YOLOv6-N achieves 37.5\% AP at 1187 FPS on an NVIDIA Tesla T4 GPU. YOLOv6-S reaches 45.0\% AP at 484 FPS, outperforming models like PPYOLOE-S, YOLOv5-S, YOLOX-S, and YOLOv8-S in the same class. Moreover, YOLOv6-M and YOLOv6-L also show better accuracy (50.0\% and 52.8\%) while maintaining comparable inference speeds to other detectors. With an upgraded backbone and neck structure, YOLOv6-L6 delivers cutting-edge accuracy in real-time.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications 2022 Chuyi Li
Lulu Li
Hongliang Jiang
Kaiheng Weng
Yifei Geng
Liang Li
Zaidan Ke
Qingyuan Li
Meng Cheng
Weiqiang Nie
+ PDF Chat YOLOv10: Real-Time End-to-End Object Detection 2024 Ao Wang
Hui Chen
Lihao Liu
Kai Chen
Zijia Lin
Jungong Han
Guiguang Ding
+ YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors 2022 Chien-Yao Wang
Alexey Bochkovskiy
Hong-Yuan Mark Liao
+ PP-YOLO: An Effective and Efficient Implementation of Object Detector 2020 Xiang Long
Kaipeng Deng
Guanzhong Wang
Yang Zhang
Qingqing Dang
Yuan Gao
Hui Shen
Jianguo Ren
Shumin Han
Errui Ding
+ PDF Chat What is YOLOv5: A deep look into the internal features of the popular object detector 2024 Rahima Khanam
Muhammad Azhar Hussain
+ PDF Chat YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision 2024 Muhammad Azhar Hussain
+ YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection 2023 Yumin Chen
Xinbin Yuan
Ruiqi Wu
Jiabao Wang
Qibin Hou
Ming‐Ming Cheng
+ PDF Chat YOLO9000: Better, Faster, Stronger 2017 Joseph Redmon
Ali Farhadi
+ DAMO-YOLO : A Report on Real-Time Object Detection Design 2022 Xianzhe Xu
Yiqi Jiang
Weihua Chen
Yilun Huang
Yuan Zhang
Xiuyu Sun
+ YOLO9000: Better, Faster, Stronger 2016 Joseph Redmon
Ali Farhadi
+ PDF Chat A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS 2023 Juan Terven
Diana‐Margarita Córdova‐Esparza
Julio-Alejandro Romero-González
+ DEYOv3: DETR with YOLO for Real-time Object Detection 2023 Haodong Ouyang
+ A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS 2023 Juan Terven
Diana Cordova-Esparza
+ RMOPP: Robust Multi-Objective Post-Processing for Effective Object Detection 2021 Mayuresh Savargaonkar
Abdallah Chehade
Samir A. Rawashdeh
+ Evaluation of YOLO Models with Sliced Inference for Small Object Detection 2022 Muhammed Can Keles
Batuhan Salmanoglu
Mehmet Serdar Güzel
Baran Gursoy
Erkan Bostancı
+ YOLOv6 v3.0: A Full-Scale Reloading 2023 Chuyi Li
Lulu Li
Yifei Geng
Hongliang Jiang
Meng Cheng
Bo Zhang
Zaidan Ke
XU Xiao-ming
Xiangxiang Chu
+ PDF Chat Replication Study and Benchmarking of Real-Time Object Detection Models 2024 Pierre-Luc Asselin
Vincent Coulombe
William Guimont-Martin
William Larrivée-Hardy
+ EdgeYOLO: An Edge-Real-Time Object Detector 2023 Shihan Liu
Junlin Zha
Jian Sun
Zhuo Li
Gang Wang
+ YOLOv4: Optimal Speed and Accuracy of Object Detection 2020 Alexey Bochkovskiy
Chien-Yao Wang
Hong-Yuan Mark Liao
+ RTMDet: An Empirical Study of Designing Real-Time Object Detectors 2022 Chengqi Lyu
Wenwei Zhang
Haian Huang
Yue Zhou
Yudong Wang
Yanyi Liu
Shilong Zhang
Kai Chen

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors