Spectrality of a class of moran measures on $\mathbb{R}^2$

Type: Preprint

Publication Date: 2024-12-15

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2412.11200

Abstract

Let $\mu_{\{M_n\},\{D_n\}}$ be a Moran measure on $\mathbb{R}^2$ generated by a sequence of expanding matrices $\{M_n\}\subset GL(2, \mathbb{Z})$ and a sequence of integer digit sets $\{D_n\}$ where $D_n=\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix},\begin{pmatrix} \alpha_{n_1} \\ \alpha_{n_2} \end{pmatrix},\begin{pmatrix} \beta_{n_1} \\ \beta_{n_2} \end{pmatrix},\begin{pmatrix} -\alpha_{n_1}-\beta_{n_1} \\ -\alpha_{n_2}-\beta_{n_2} \end{pmatrix} \right\}$ with $\alpha_{n_1}\beta_{n_2}-\alpha_{n_2}\beta_{n_1}\notin2\mathbb{Z}$. If $|\det(M_n)|>4$ for $n\geq1$, $\sup\limits_{n\ge 1}\Vert M_n^{-1}\Vert<1$ and $\#\{D_n: n\ge 1\}<\infty$, then we show that $\mu_{\{M_n\},\{D_n\}}$ is a spectral measure if and only if $M_n\in GL(2, 2\mathbb{Z})$ for $n\geq2$. If $|\det(M_n)| =4$ for $n\geq1$, we also establish a necessary and sufficient condition for a class of special Moran measures to be spectral measures.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the spectrality of a class of Moran measures 2024 Yali Zheng
Yingqing Xiao
+ Spectrality of a Class of Moran Measures 2019 Mingliang Chen
Jing‐Cheng Liu
Juan Su
Xiang-Yang Wang
+ Spectrality of a class of Moran measures on with consecutive digit sets 2022 Si Chen
Qian Li
+ Spectrality of a Class of Moran Measures on $$\mathbb {R}^n$$ 2024 Mingliang Chen
+ Spectral Moran measures on R2 * 2022 Zhi-Hui Yan
+ SPECTRAL PROPERTY OF CERTAIN MORAN MEASURES IN $\mathbb{R}^{n}$ 2022 Wen‐Hui Ai
S. T. PENG
+ On the spectra of a class of Moran measures 2023 Mingliang Chen
Jian Cao
Jialin Wang
Ye Wang
+ A Class of Homogeneous Moran Spectral Measures with Eight-Element Digit Sets on $${\mathbb R}^4$$ 2021 Yan-Song Fu
Meng Zhu
+ Spectral property of a class of Moran measures on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">R</mml:mi></mml:math> 2015 Yan-Song Fu
Zhi‐Xiong Wen
+ Non-spectrality of Moran measures with consecutive digits 2022 Ya-Li Zheng
Wen‐Hui Ai
+ Spectrality and non-spectrality of some Moran measures in $$\mathbb {R}^3$$ 2022 Xin Yang
Wen‐Hui Ai
+ Non-spectrality of a class of Moran measures on $$\mathbb {R}^{3}$$ 2023 Qi Wang
Xueli Wang
+ Spectral properties of certain Moran measures with consecutive and collinear digit sets 2020 Hai-Hua Wu
Yumin Li
Xin‐Han Dong
+ Spectral properties of a class of Moran measures on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e50" altimg="si35.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> 2023 Zhi-Hui Yan
+ Spectral and non-spectral property of self-affine measures on ℝn 2023 Weijie Wang
+ Spectral and non-spectral property of self-affine measures on ℝn 2023 WeiJie Wang
+ Characterization of Spectral Cantor-Moran Measures with Consecutive Digits 2022 Li-Xiang An
Qian Li
MIN-MIN ZHANG
+ A CLASS OF SPECTRAL MORAN MEASURES ON ℝ 2019 Zong-Sheng Liu
Xin-han Dong
Peng-Fei Zhang
+ Spectrality of a class of Moran measures 2021 Zheng-Yi Lu
Xin‐Han Dong
+ Spectra of a Class of Moran Measures 2018 Zong-Sheng Liu
Xin-han Dong

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors