Adaptive conformal classification with noisy labels

Type: Article

Publication Date: 2024-12-16

Citations: 0

DOI: https://doi.org/10.1093/jrsssb/qkae114

Abstract

Abstract This article develops a conformal prediction method for classification tasks that can adapt to random label contamination in the calibration sample, often leading to more informative prediction sets with stronger coverage guarantees compared to existing approaches. This is obtained through a precise characterization of the coverage inflation (or deflation) suffered by standard conformal inferences in the presence of label contamination, which is then made actionable through a new calibration algorithm. Our solution can leverage different modelling assumptions about the contamination process, while requiring no knowledge of the underlying data distribution or of the inner workings of the classification model. The empirical performance of the proposed method is demonstrated through simulations and an application to object classification with the CIFAR-10H image data set.

Locations

  • Journal of the Royal Statistical Society Series B (Statistical Methodology) - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Adaptive conformal classification with noisy labels 2023 Matteo Sesia
Y. X. Rachel Wang
Xin Tong
+ PDF Chat Estimating the Conformal Prediction Threshold from Noisy Labels 2025 Coby Penso
Jacob Goldberger
Ethan Fetaya
+ PDF Chat Conformal-in-the-Loop for Learning with Imbalanced Noisy Data 2024 John Brandon Graham-Knight
Jamil Fayyad
Nourhan Bayasi
Patricia Lasserre
Homayoun Najjaran
+ Conformal Prediction is Robust to Dispersive Label Noise 2022 Bat-Sheva Einbinder
Stephen Bates
Anastasios N. Angelopoulos
Asaf Gendler
Yaniv Romano
+ Adaptive Conformal Inference Under Distribution Shift 2021 Isaac Gibbs
Emmanuel J. Candès
+ Adaptive Conformal Inference Under Distribution Shift 2021 Isaac Gibbs
Emmanuel J. Candès
+ Uncertainty Sets for Image Classifiers using Conformal Prediction 2021 Anastasios N. Angelopoulos
Stephen Bates
Michael I. Jordan
Jitendra Malik
+ Uncertainty Sets for Image Classifiers using Conformal Prediction 2020 Anastasios N. Angelopoulos
Stephen Bates
Jitendra Malik
Michael I. Jordan
+ Uncertainty Sets for Image Classifiers using Conformal Prediction 2020 Anastasios N. Angelopoulos
Stephen Bates
Jitendra Malik
Michael I. Jordan
+ PDF Chat Provably Robust Conformal Prediction with Improved Efficiency 2024 Yan Ge
Yaniv Romano
Tsui-Wei Weng
+ PAC Prediction Sets Under Label Shift 2023 Wenwen Si
Sangdon Park
Insup Lee
Edgar Dobriban
Osbert Bastani
+ Conformal Prediction for Deep Classifier via Label Ranking 2023 Jianguo Huang
H. Xi
Linjun Zhang
Huaxiu Yao
Yue Qiu
Hongxin Wei
+ PDF Chat Adapting Conformal Prediction to Distribution Shifts Without Labels 2024 Kevin Kasa
Zhe Zhang
Heng Yang
Graham W. Taylor
+ PDF Chat On Calibration and Conformal Prediction of Deep Classifiers 2024 Lahav Dabah
Tom Tirer
+ Test-time Recalibration of Conformal Predictors Under Distribution Shift Based on Unlabeled Examples 2022 Fatih Yılmaz
Reinhard Heckel
+ Adaptive Conformal Inference Under Distribution Shift 2021 Isaac Gibbs
Emmanuel J. Candès
+ PDF Chat C-Adapter: Adapting Deep Classifiers for Efficient Conformal Prediction Sets 2024 Kangdao Liu
Hao Zeng
Jianguo Huang
Huiping Zhuang
Chi‐Man Vong
Hongxin Wei
+ Robust Validation: Confident Predictions Even When Distributions Shift 2023 Maxime Cauchois
Suyash Gupta
Alnur Ali
John C. Duchi
+ Model Calibration in Dense Classification with Adaptive Label Perturbation 2023 Jiawei Liu
Changkun Ye
Shan Wang
Ruikai Cui
Jing Zhang
Kaihao Zhang
Nick Barnes
+ PDF Chat Model Calibration in Dense Classification with Adaptive Label Perturbation 2023 Jiawei Liu
Changkun Ye
Shan Wang
Ruikai Cui
Jing Zhang
Kaihao Zhang
Nick Barnes

Works That Cite This (0)

Action Title Year Authors