Spherical maximal operators with fractal sets of dilations on radial functions

Type: Preprint

Publication Date: 2024-12-12

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2412.09390

Abstract

For a given set of dilations $E\subset [1,2]$, Lebesgue space mapping properties of the spherical maximal operator with dilations restricted to $E$ are studied when acting on radial functions. In higher dimensions, the type set only depends on the upper Minkowski dimension of $E$, and in this case complete endpoint results are obtained. In two dimensions we determine the closure of the $L^p\to L^q$ type set for every given set $E$ in terms of a dimensional spectrum closely related to the upper Assouad spectrum of $E$.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat $L^p$-improving bounds for spherical maximal operators over restricted dilation sets: radial improvement 2024 S. J. Zhao
+ Spherical maximal functions and fractal dimensions of dilation sets 2020 Joris Roos
Andreas Seeger
+ PDF Chat Spherical maximal functions and fractal dimensions of dilation sets 2023 Joris Roos
Andreas Seeger
+ L 2 -Boundedness of Spherical Maximal Operators with Multidimensional Parameter Sets 1989 Young-Hwa Ha
+ Bounds for maximal functions associated to rotational invariant measures in high dimensions 2011 Alberto Criado
Peter Sjögren
+ Bounds for maximal functions associated to rotational invariant measures in high dimensions 2011 Alberto Criado
Peter Sjögren
+ Endpoint mapping properties of spherical maximal operators 2002 Andreas Seeger
Terence Tao
James Wright
+ Endpoint mapping properties of spherical maximal operators 2002 Andreas Seeger
Terence Tao
James Wright
+ PDF Chat Bounds for Maximal Functions Associated with Rotational Invariant Measures in High Dimensions 2012 Alberto Criado
Peter Sjögren
+ Maximal operators in nondoubling metric measure spaces 2021 Dariusz Kosz
+ Maximal operators in nondoubling metric measure spaces 2021 Dariusz Kosz
+ Maximal operators on Lorentz spaces in non-doubling setting 2019 Dariusz Kosz
+ Maximal operators on Lorentz spaces in non-doubling setting 2019 Dariusz Kosz
+ Boundedness properties of maximal operators on Lorentz spaces in non-doubling setting 2019 Dariusz Kosz
+ Spherical maximal operators on radial functions 1996 Andreas Seeger
Stephen Wainger
James Wright
+ Spherical maximal operators on radial functions 1996 Andreas Seeger
Stephen Wainger
James Wright
+ Boundedness properties of maximal operators on Lorentz spaces 2019 Dariusz Kosz
+ PDF Chat ENDPOINT MAPPING PROPERTIES OF SPHERICAL MAXIMAL OPERATORS 2003 Andreas Seeger
Terence Tao
James Wright
+ The spherical maximal operator on radial functions 2011 Javier Duoandikoetxea
Adela Moyua
Osane Oruetxebarria
+ A characterization of maximal operators associated with radial Fourier multipliers 2015 Jongchon Kim

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors