The smallest singular value for rectangular random matrices with L\'evy entries

Type: Preprint

Publication Date: 2024-12-09

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2412.06246

Abstract

Let $X=(x_{ij})\in\mathbb{R}^{N\times n}$ be a rectangular random matrix with i.i.d. entries (we assume $N/n\to\mathbf{a}>1$), and denote by $\sigma_{min}(X)$ its smallest singular value. When entries have mean zero and unit second moment, the celebrated work of Bai-Yin and Tikhomirov show that $n^{-\frac{1}{2}}\sigma_{min}(X)$ converges almost surely to $\sqrt{\mathbf{a}}-1.$ However, little is known when the second moment is infinite. In this work we consider symmetric entry distributions satisfying $\mathbb{P}(|x_{ij}|>t)\sim t^{-\alpha}$ for some $\alpha\in(0,2)$, and prove that $\sigma_{min}(X)$ can be determined up to a log factor with high probability: for any $D>0$, with probability at least $1-n^{-D}$ we have $$C_1n^{\frac{1}{\alpha}}(\log n)^\frac{5(\alpha-2)}{2\alpha}\leq \sigma_{min}(X)\leq C_2n^{\frac{1}{\alpha}}(\log n)^\frac{\alpha-2}{2\alpha}$$ for some constants $C_1,C_2>0$. This appears to be the first determination of $\sigma_{min}(X)$ in the $\alpha$-stable case with a correct leading order of $n$, as previous ant-concentration arguments only yield lower bound $n^\frac{1}{2}$. The same lower bound holds for $\sigma_{min}(X+B)$ for any fixed rectangular matrix $B$ with no assumption on its operator norm. The case of diverging aspect ratio is also computed. Geometrically, the lower bound shows that the random polytope $X^*(B_1^N)$ generated by heavy-tail distributions will with very high probability contain Euclidean balls $B_2^n$ of a much larger radius compared to its Gaussian counterpart.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The smallest singular value of random rectangular matrices with no moment assumptions on entries 2014 Konstantin Tikhomirov
+ The smallest singular value of random rectangular matrices with no moment assumptions on entries 2014 Konstantin Tikhomirov
+ PDF Chat The smallest singular value of random rectangular matrices with no moment assumptions on entries 2016 Konstantin Tikhomirov
+ The limit of the smallest singular value of random matrices with i.i.d. entries 2014 Konstantin Tikhomirov
+ The limit of the smallest singular value of random matrices with i.i.d. entries 2014 Konstantin Tikhomirov
+ Bounding the smallest singular value of a random matrix without concentration 2013 Vladimir Koltchinskii
Shahar Mendelson
+ Bounding the smallest singular value of a random matrix without concentration 2013 Vladimir Koltchinskii
Shahar Mendelson
+ PDF Chat Bounding the Smallest Singular Value of a Random Matrix Without Concentration 2015 Vladimir Koltchinskii
Shahar Mendelson
+ On the smallest singular value of symmetric random matrices 2020 Vishesh Jain
Ashwin Sah
Mehtaab Sawhney
+ On the smallest singular value of symmetric random matrices 2020 Vishesh Jain
Ashwin Sah
Mehtaab Sawhney
+ The smallest singular value of random combinatorial matrices 2020 Tuan Tran
+ PDF Chat Quantitative estimates of the singular values of random i.i.d. matrices 2024 Guozheng Dai
Zhonggen Su
Hanchao Wang
+ PDF Chat The smallest singular value of inhomogenous random rectangular matrices 2024 Max Dabagia
Manuel Fernández
+ PDF Chat Phase transition for the bottom singular vector of rectangular random matrices 2024 Zhigang Bao
Jaehun Lee
Xiaocong Xu
+ PDF Chat The smallest singular value of large random rectangular Toeplitz and circulant matrices 2024 Alexei Onatski
Vladislav Kargin
+ The smallest singular value of a random rectangular matrix 2008 Mark Rudelson
Roman Vershynin
+ The smallest singular value of a random rectangular matrix 2008 Mark Rudelson
Roman Vershynin
+ PDF Chat Smallest singular value of a random rectangular matrix 2009 Mark Rudelson
Roman Vershynin
+ PDF Chat The least singular value of a random square matrix is <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mi mathvariant="normal">O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2008 Mark Rudelson
Roman Vershynin
+ PDF Chat On the smallest singular value of symmetric random matrices 2021 Vishesh Jain
Ashwin Sah
Mehtaab Sawhney

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors