Rendering-Refined Stable Diffusion for Privacy Compliant Synthetic Data

Type: Preprint

Publication Date: 2024-12-09

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2412.06248

Abstract

Growing privacy concerns and regulations like GDPR and CCPA necessitate pseudonymization techniques that protect identity in image datasets. However, retaining utility is also essential. Traditional methods like masking and blurring degrade quality and obscure critical context, especially in human-centric images. We introduce Rendering-Refined Stable Diffusion (RefSD), a pipeline that combines 3D-rendering with Stable Diffusion, enabling prompt-based control over human attributes while preserving posture. Unlike standard diffusion models that fail to retain posture or GANs that lack realism and flexible attribute control, RefSD balances posture preservation, realism, and customization. We also propose HumanGenAI, a framework for human perception and utility evaluation. Human perception assessments reveal attribute-specific strengths and weaknesses of RefSD. Our utility experiments show that models trained on RefSD pseudonymized data outperform those trained on real data in detection tasks, with further performance gains when combining RefSD with real data. For classification tasks, we consistently observe performance improvements when using RefSD data with real data, confirming the utility of our pseudonymized data.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Context-Aware Full Body Anonymization using Text-to-Image Diffusion Models 2024 Pascl Zwick
Kevin Roesch
Marvin Klemp
Oliver Bringmann
+ PDF Chat Latent Diffusion Models for Attribute-Preserving Image Anonymization 2024 Luca Piano
Pietro Basci
Fabrizio Lamberti
Lia Morra
+ PDF Chat Anonymization Prompt Learning for Facial Privacy-Preserving Text-to-Image Generation 2024 Liang Shi
Jie Zhang
Shiguang Shan
+ PDF Chat Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models 2024 Boheng Li
Yanhao Wei
Yankai Fu
Zhenting Wang
Yiming Li
Jie Zhang
Run Wang
Tianwei Zhang
+ Towards More Realistic Membership Inference Attacks on Large Diffusion Models 2023 Jan Michal Dubinski
Antoni Kowalczuk
Stanisław Pawlak
P. S. Rokita
T. P. Trzcinski
Paweł Morawiecki
+ PDF Chat Replication in Visual Diffusion Models: A Survey and Outlook 2024 Wenhao Wang
Yifan Sun
Zongxin Yang
Zhengdong Hu
Zhentao Tan
Yi Yang
+ Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation 2023 Zhengyue Zhao
Jinhao Duan
Xing Hu
Kaidi Xu
Chenan Wang
Rui Zhang
Zidong Du
Qi Guo
Yunji Chen
+ MediaEval 2019: Concealed FGSM Perturbations for Privacy Preservation 2019 Panagiotis Linardos
Suzanne Little
Kevin McGuinness
+ MediaEval 2019: Concealed FGSM Perturbations for Privacy Preservation 2019 Panagiotis Linardos
Suzanne Little
Kevin McGuinness
+ PDF Chat Towards More Realistic Membership Inference Attacks on Large Diffusion Models 2024 Jan Michal Dubinski
Antoni Kowalczuk
Stanisław Pawlak
P. S. Rokita
T. P. Trzcinski
Paweł Morawiecki
+ PDF Chat PID: Prompt-Independent Data Protection Against Latent Diffusion Models 2024 Ang Li
Yichuan Mo
Mingjie Li
Yisen Wang
+ PDF Chat Edit Away and My Face Will not Stay: Personal Biometric Defense against Malicious Generative Editing 2024 Hanhui Wang
Yihua Zhang
Ran Bai
Yue Zhao
Sijia Liu
Zhengzhong Tu
+ PDF Chat DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing 2024 June Suk Choi
Kyungmin Lee
Jongheon Jeong
Saining Xie
Jinwoo Shin
Kimin Lee
+ PDF Chat FoolSDEdit: Deceptively Steering Your Edits Towards Targeted Attribute-aware Distribution 2024 Qi Zhou
Dongxia Wang
T. P. Li
Zhihong Xu
Yang Liu
Kui Ren
Wenhai Wang
Qing Guo
+ PDF Chat My Body My Choice: Human-Centric Full-Body Anonymization 2024 Umur Aybars Çiftçi
Ali Kemal Tanriverdi
İlke Demir
+ PDF Chat When Synthetic Traces Hide Real Content: Analysis of Stable Diffusion Image Laundering 2024 Sara Mandelli
Paolo Bestagini
Stefano Tubaro
+ PDF Chat Uncovering Hidden Subspaces in Video Diffusion Models Using Re-Identification 2024 Mischa Dombrowski
Hadrien Reynaud
Bernhard Kainz
+ LDFA: Latent Diffusion Face Anonymization for Self-driving Applications 2023 Marvin Klemp
Kevin Rösch
Royden Wagner
Jannik Quehl
Martin Lauer
+ To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now 2023 Yimeng Zhang
Jinghan Jia
Xin Chen
Aochuan Chen
Yihua Zhang
Jiancheng Liu
Ke Ding
Sijia Liu
+ Data Forensics in Diffusion Models: A Systematic Analysis of Membership Privacy 2023 Derui Zhu
Dingfan Chen
Jens Großklags
Mario Fritz

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors