Identifying an effective model for the two-stage-Kondo regime: Numerical renormalization group results

Type: Preprint

Publication Date: 2024-12-08

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2412.05930

View Chat PDF

Abstract

A composite impurity in a metal can explore different configurations, where its net magnetic moment may be screened by the host electrons. An example is the two-stage Kondo (TSK) system, where screening occurs at successively smaller energy scales. Alternatively, impurities may prefer a local singlet disconnected from the metal. This competition is influenced by the system's couplings. A double quantum dot T-shape geometry, where a "hanging" dot is connected to current leads only via another dot, allows experimental exploration of these regimes. Differentiating the two regimes has been challenging. This study provides a method to identify the TSK regime in such a geometry. The TSK regime requires a balance between the inter-dot coupling ($t_{01}$) and the coupling of the quantum dot connected to the Fermi sea ($\Gamma_0$). Above a certain ratio, the system transitions to a molecular regime, forming a local singlet with no Kondo screening. The study identifies a region in the $t_{01}$--$\Gamma_0$ parameter space where a pure TSK regime occurs. Here, the second Kondo stage properties can be described by a single impurity Anderson model with effective parameters. By examining the magnetic susceptibility of the hanging quantum dot, a single parameter, $\Gamma_{\rm eff}$, can simulate this susceptibility accurately. This effective model also provides the hanging quantum dot's spectral function accurately within a limited parameter range, defining the true TSK regime. Additionally, spin correlations between the quantum dots show universal behavior in this parameter range. These findings can guide experimental groups in selecting parameter values to place the system in either the TSK regime or the crossover to the molecular regime.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Unveiling the Kondo cloud: Unitary renormalization-group study of the Kondo model 2022 Anirban Mukherjee
Abhirup Mukherjee
N. S. Vidhyadhiraja
A. Taraphder
Siddhartha Lal
+ PDF Chat Natural orbitals renormalization group approach to the two-impurity Kondo critical point 2015 Rong-Qiang He
Jianhui Dai
Zhong-Yi Lu
+ PDF Chat Unraveling screening mechanisms in Kondo impurities using an NRG-MPS-based method 2025 Lidia Stocker
Oded Zilberberg
+ PDF Chat Crossover in the two-impurity Kondo model induced by direct charge tunneling 2010 Justin Malecki
Eran Sela
Ian Affleck
+ PDF Chat Two-Channel Charge-Kondo Physics in Graphene Quantum Dots 2022 Emma L. Minarelli
Jonas B. Rigo
Andrew K. Mitchell
+ Unveiling the Kondo cloud: unitary RG study of the Kondo model 2021 Anirban Mukherjee
Abhirup Mukherjee
N. S. Vidhyadhiraja
A. Taraphder
Siddhartha Lal
+ PDF Chat Magnetic-field-induced mixed-level Kondo effect in two-level systems 2016 Arturo Wong
Anh T. Ngo
Sergio E. Ulloa
+ PDF Chat At which magnetic field, exactly, does the Kondo resonance begin to split? A Fermi liquid description of the low-energy properties of the Anderson model 2018 Michele Filippone
Cătălin Paşcu Moca
Andreas Weichselbaum
Jan von Delft
Christophe Mora
+ PDF Chat Strong versus weak coupling duality and coupling dependence of the Kondo temperature in the two-channel Kondo model 2007 Christian Kolf
Johann Kroha
+ PDF Chat Topological quantum phase transition in individual Fe atoms on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mtext>/</mml:mtext><mml:mi>Au</mml:mi><mml:mtext>(</mml:mtext><mml:mn>111</mml:mn><mml:mtext>)</mml:mtext></mml:mrow></mml:math> 2023 G. G. Blesio
A. A. Aligia
+ PDF Chat Local susceptibility and Kondo scaling in the presence of finite bandwidth 2014 M. Hanl
Andreas Weichselbaum
+ PDF Chat Numerical renormalization group study of two-channel three-impurity triangular clusters 2008 Rok Žitko
J. Bonča
+ The Kondo screening cloud: what it is and how to observe it 2009 Ian Affleck
+ Kondo Screening Cloud Scaling: Impurity Entanglement and Magnetization 2023 Erik S. Sørensen
+ Multiple-impurity Anderson model for quantum dots coupled in parallel 2006 Rok Žitko
J. Bonča
+ At which magnetic field, exactly, does the Kondo resonance begin to split? A Fermi liquid description of the low-energy properties of the Anderson model 2017 Michele Filippone
Cătălin Paşcu Moca
Jan von Delft
Christophe Mora
+ PDF Chat The Kondo impurity in the large spin limit 2024 Abijith Krishnan
Max A. Metlitski
+ Quantum transport in interacting nanodevices: from quantum dots to single-molecule transistors 2022 Emma L. Minarelli
+ PDF Chat Fermi-liquid theory for the single-impurity Anderson model 2015 Christophe Mora
Cătălin Paşcu Moca
Jan von Delft
Gergely Zaránd
+ PDF Chat Prospect for observing the quantum critical point in double quantum dot systems 2010 Justin Malecki
Eran Sela
Ian Affleck

Cited by (0)

Action Title Year Authors

Citing (0)

Action Title Year Authors