Treewidth versus clique number: induced minors

Type: Preprint

Publication Date: 2024-10-23

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2410.17979

View Chat PDF

Abstract

We prove that a hereditary class of graphs is $(\mathsf{tw}, \omega)$-bounded if and only if the induced minors of the graphs from the class form a $(\mathsf{tw}, \omega)$-bounded class.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Treewidth versus clique number in graph classes with a forbidden structure 2020 Clément Dallard
Martin Milanič
Kenny Štorgel
+ PDF Chat Induced Minor Free Graphs: Isomorphism and Clique-Width 2016 Rémy Belmonte
Yota Otachi
Pascal Schweitzer
+ Induced subgraphs and path decompositions 2022 Robert Hickingbotham
+ PDF Chat Induced Subgraphs and Path Decompositions 2023 Robert Hickingbotham
+ PDF Chat Clique-Width of Graph Classes Defined by Two Forbidden Induced Subgraphs 2015 Konrad K. Dabrowski
Daniël Paulusma
+ Clique-width of Graph Classes Defined by Two Forbidden Induced Subgraphs 2014 Konrad K. Dabrowski
Daniël Paulusma
+ PDF Chat On the number of cliques in graphs with a forbidden minor 2017 Jacob Fox
Fan Wei
+ PDF Chat Diameter and Treewidth in Minor-Closed Graph Families 2000 David Eppstein
+ On the excluded minor structure theorem for graphs of large tree-width 2012 Reinhard Diestel
Ken‐ichi Kawarabayashi
Theodor Müller
Paul Wollan
+ Tree-width dichotomy 2020 Vadim Lozin
Igor Razgon
+ A framework for minimal hereditary classes of graphs of unbounded clique-width 2022 Robert Brignall
Cocks Daniel
+ Minors in graphs of large <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml4" display="inline" overflow="scroll" altimg="si4.gif"><mml:msub><mml:mrow><mml:mi>θ</mml:mi></mml:mrow><mml:mrow><mml:mi>r</mml:mi></mml:mrow></mml:msub></mml:math>-girth 2017 Dimitris Chatzidimitriou
Jean‐Florent Raymond
Ignasi Sau
Dimitrios M. Thilikos
+ Infinitely many minimal classes of graphs of unbounded clique-width 2017 A. Collins
Jan Foniok
Nicholas Korpelainen
Vadim Lozin
Viktor Zamaraev
+ Graph classes with and without powers of bounded clique-width 2015 Flavia Bonomo
Luciano N. Grippo
Martin Milanič
Martín D. Safe
+ New Graph Classes of Bounded Clique-Width 2004 Andreas Brandstädt
Feodor F. Dragan
Hoàng-Oanh Le
Raffaele Mosca
+ On the Clique-Width of Graphs in Hereditary Classes 2002 Rodica Boliac
Vadim Lozin
+ PDF Chat A Framework for Minimal Hereditary Classes of Graphs of Unbounded Clique-Width 2023 Robert Brignall
Cocks Daniel
+ Tree-width dichotomy. 2020 Vadim Lozin
Igor Razgon
+ Diameter and Treewidth in Minor-Closed Graph Families, Revisited 2004 Erik D. Demaine
Mohammad Taghi Hajiaghayi
+ Tree-width dichotomy 2022 Vadim Lozin
Igor Razgon

Cited by (0)

Action Title Year Authors

Citing (0)

Action Title Year Authors