High-Fidelity Description of Platelet Deformation Using a Neural Operator

Type: Preprint

Publication Date: 2024-12-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2412.00747

Abstract

The goal of this work is to investigate the capability of a neural operator (DeepONet) to accurately capture the complex deformation of a platelet's membrane under shear flow. The surrogate model approximated by the neural operator predicts the deformed membrane configuration based on its initial configuration and the shear stress exerted by the blood flow. The training dataset is derived from particle dynamics simulations implemented in LAMMPS. The neural operator captures the dynamics of the membrane particles with a mode error distribution of approximately 0.5\%. The proposed implementation serves as a scalable approach to integrate sub-platelet dynamics into multi-scale computational models of thrombosis.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow 2014 Ziheng Wu
Zhiliang Xu
Олег Ким
Mark Alber
+ Multiscale 3D Model of Platelet-Vessel Wall Interactions in Blood Flow 2013 Ziheng Wu
Zhiliang Xu
Mark Alber
+ A Meshless Solver for Blood Flow Simulations in Elastic Vessels Using Physics-Informed Neural Network 2023 Zhang Han
Raymond H. Chan
Xue–Cheng Tai
+ PDF Chat A Meshless Solver for Blood Flow Simulations in Elastic Vessels Using a Physics-Informed Neural Network 2024 Han Zhang
Raymond H. Chan
Xue–Cheng Tai
+ PDF Chat Non-invasive inference of thrombus material properties with physics-informed neural networks 2020 Minglang Yin
Xiaoning Zheng
Jay D. Humphrey
George Em Karniadakis
+ PDF Chat Model-parallel Fourier neural operators as learned surrogates for large-scale parametric PDEs 2023 Thomas J. Grady
Rishi Khan
Mathias Louboutin
Ziyi Yin
Philipp Witte
Ranveer Chandra
Russell J. Hewett
Felix J. Herrmann
+ Predicting the Mechanical Properties of Fibrin Using Neural Networks Trained on Discrete Fiber Network Data. 2021 Yue Leng
Sarah Calve
Adrián Buganza Tepole
+ PDF Chat Shape-driven deep neural networks for fast acquisition of aortic 3D pressure and velocity flow fields 2023 Endrit Pajaziti
Javier Montalt‐Tordera
Claudio Capelli
Raphaël Sivera
Emilie Sauvage
Michael A. Quail
Silvia Schievano
Vivek Muthurangu
+ Geometric Deep Learning for the Assessment of Thrombosis Risk in the Left Atrial Appendage 2022 Xabier Morales
Jordi Mill
Guillem Simeon
Kristine Aavild Juhl
Ole De Backer
Rasmus R. Paulsen
Óscar Cámara
+ Artificial intelligence for accelerating time integrations in multiscale modeling 2020 Changnian Han
Peng Zhang
Danny Bluestein
Guojing Cong
Yuefan Deng
+ PDF Chat Deep learning-based surrogate model for three-dimensional patient-specific computational fluid dynamics 2022 Pan Du
Xiaozhi Zhu
Jianxun Wang
+ PDF Chat Enhancing physiologic simulations using supervised learning on coarse mesh solutions 2015 Kumaran Kolandaivelu
Caroline O’Brien
Tarek Shazly
Elazer R. Edelman
Vijaya B. Kolachalama
+ PDF Chat Digital blood in massively parallel CPU/GPU systems for the study of platelet transport 2020 Christos Kotsalos
Jonas Lätt
Joël Bény
Bastien Chopard
+ Cellular blood flow modelling with HemoCell 2023 Gábor Závodszky
Christian Spieker
Benjamin Czaja
Britt van Rooij
+ Deep Learning-based surrogate models for parametrized PDEs: handling geometric variability through graph neural networks 2023 Nicola Rares Franco
Stefania Fresca
Filippo Tombari
Andrea Manzoni
+ Interfacing Finite Elements with Deep Neural Operators for Fast Multiscale Modeling of Mechanics Problems 2022 Minglang Yin
Enrui Zhang
Yue Yu
George Em Karniadakis
+ PDF Chat Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics 2024 Artur P. Toshev
Jonas A. Erbesdobler
Nikolaus A. Adams
J. Brandstetter
+ NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations 2021 Kirill Zubov
Zoe McCarthy
Yingbo Ma
Francesco Calisto
Valerio Pagliarino
Simone Azeglio
Luca Bottero
Emmanuel Luján
Valentin Sulzer
Ashutosh Bharambe
+ NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations 2021 Kirill Zubov
Zoe McCarthy
Yingbo Ma
Francesco Calisto
Valerio Pagliarino
Simone Azeglio
Luca Bottero
Emmanuel Luján
Valentin Sulzer
Ashutosh Bharambe
+ Nonlinear model order reduction for problems with microstructure using mesh informed neural networks 2023 Piermario Vitullo
Alessio Colombo
Nicola Rares Franco
Andrea Manzoni
Paolo Zunino

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors