On Local Well-posedness of the Periodic Korteweg-de Vries Equation Below $H^{-\frac{1}{2}}(\mathbb{T})$

Type: Preprint

Publication Date: 2024-11-22

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2411.15069

Abstract

We utilize a modulation restricted normal form approach to establish local well-posedness of the periodic Korteweg-de Vries equation in $H^s(\mathbb{T})$ for $s> -\frac23$. This work creates an analogue of the mKdV result by Nakanishi, Takaoka, and Tsutsumi for KdV, extending the currently best-known result of $s \geq -\frac12$ without utilizing the theory of complete integrability.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Local well-posedness for the gKdV equation on the background of a bounded function 2021 José Manuel Palacios
+ Global well-posedness for periodic generalized KdV equation 2013 Jiguang Bao
Yifei Wu
+ Local well-posedness for the gKdV equation on the background of a bounded function 2022 José M. Palacios
+ Low regularity Cauchy problem for the fifth-order modified KdV equations on $\mathbb{T}$ 2015 Chulkwang Kwak
+ Local well-posedness for the periodic mKdV in $H^{1/4+}$ 2014 Atanas Stefanov
+ Low regularity Cauchy problem for the fifth-order modified KdV equations on 𝕋 2018 Chulkwang Kwak
+ PDF Chat Local well-posedness for the periodic higher order KdV type equations 2011 Hiroyuki Hirayama
+ PDF Chat Global well-posedness for periodic generalized Korteweg-de Vries equation 2017 Yi Wu
+ Global Well-posedness of Korteweg-de Vries equation in $H^{-3/4}(\R)$ 2008 Zihua Guo
+ Local Well-posedness of the Coupled KdV-KdV Systems on the whole line $R$ 2018 Xin Yang
Bing‐Yu Zhang
+ On global well-posedness of the modified KdV equation in modulation spaces 2018 Tadahiro Oh
Yuzhao Wang
+ Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ On the periodic Korteweg-de Vries equation: a normal form approach 2011 Seungly Oh
+ Global well-posedness of NLS-KdV systems for periodic functions 2007 Carlos Matheus
+ PDF Chat Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes 2012 Qifan Li
+ PDF Chat Local well-posedness of the coupled KdV-KdV systems on $ \mathbb{R} $ 2022 Xin Yang
Bing‐Yu Zhang
+ PDF Chat On local well-posedness and ill-posedness results for a coupled system of mkdv type equations 2020 Xavier Carvajal
Liliana Esquivel
Raphael Santos
+ PDF Chat Local Well-Posedness of the KdV Equation with Quasi-Periodic Initial Data 2012 Kotaro Tsugawa
+ Discrete Fourier restriction associated with KdV equations 2011 Yichen Hu
Xiao-Chun Li
+ Smoothing and growth bound of periodic generalized Korteweg-de Vries equation 2020 Seungly Oh
Atanas Stefanov

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors