Sign changes on $\sum \frac{f(n)}{\sqrt{n}}$ for random completely multiplicative $f$

Type: Preprint

Publication Date: 2024-11-06

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2411.14447

Abstract

If $f: \mathbb{N} \rightarrow \{\pm1\}$ is a sample of the random completely multiplicative function, we show that almost surely $\sum_{n \le x} \frac{f(n)}{\sqrt{n}}$ changes signs infinitely many times, answering a question of Aymone.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Sign changes of the partial sums of a random multiplicative function 2022 Marco Aymone
Winston Heap
Jing Zhao
+ Sign changes of the partial sums of a random multiplicative function 2021 Marco Aymone
Winston Heap
Jing Zhao
+ Sign changes of the partial sums of a random multiplicative function II 2023 Marco Aymone
+ Counting sign changes of partial sums of random multiplicative functions 2023 Nick Geis
Ghaith A. Hiary
+ How negative can $\sum_{n\le x}\frac{f(n)}{n}$ be? 2022 Bryce Kerr
Oleksiy Klurman
+ Counting sign changes of partial sums of random multiplicative functions 2024 Nick Geis
Ghaith A. Hiary
+ PDF Chat On consecutive values of random completely multiplicative functions 2020 Joseph Najnudel
+ Sign changes of the partial sums of a random multiplicative function II 2024 Marco Aymone
+ On consecutive values of random completely multiplicative functions 2017 Joseph Najnudel
+ On consecutive values of random completely multiplicative functions 2017 Joseph Najnudel
+ On the Oscillations of Multiplicative Functions Taking Values +/- 1 2002 Ernie Croot
+ PDF Chat Sign changes of the partial sums of a random multiplicative function III: Average 2024 Marco Aymone
+ On a Turán conjecture and random multiplicative functions 2022 Rodrigo Angelo
Max Wenqiang Xu
+ Random sums 2017 Tuomas Hytönen
Jan van Neerven
Mark Veraar
Lutz Weis
+ Random sums 2017
+ On a Spitzer-type law of large numbers for partial sums of $${\mathbf {m}}$$-negatively associated random variables 2021 Fakhreddine Boukhari
+ Strong laws of large numbers for negatively dependent random elements 1997 Ronald F. Patterson
Robert L. Taylor
+ PDF Chat Random summability and Fourier series 1943 Richard Bellman
+ Almost sure upper bound for random multiplicative functions 2023 Rachid Caich
+ An almost sure upper bound for random multiplicative functions on integers with a large prime factor 2021 Daniele Mastrostefano

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors