Quantum reservoir computing in atomic lattices

Type: Preprint

Publication Date: 2024-11-20

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2411.13401

Abstract

Quantum reservoir computing (QRC) exploits the dynamical properties of quantum systems to perform machine learning tasks. We demonstrate that optimal performance in QRC can be achieved without relying on disordered systems. Systems with all-to-all topologies and random couplings are generally considered to minimize redundancies and enhance performance. In contrast, our work investigates the one-dimensional Bose-Hubbard model with homogeneous couplings, where a chaotic phase arises from the interplay between coupling and interaction terms. Interestingly, we find that performance in different tasks can be enhanced either in the chaotic regime or in the weak interaction limit. Our findings challenge conventional design principles and indicate the potential for simpler and more efficient QRC implementations tailored to specific tasks in Bose-Hubbard lattices.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Role of coherence in many-body Quantum Reservoir Computing 2024 Ana Palacios
Rodrigo MartĂ­nez‐Peña
Miguel C. Soriano
Gian Luca Giorgi
Roberta Zambrini
+ PDF Chat Quantum reservoir computing on random regular graphs 2024 Moein N. Ivaki
Achilleas Lazarides
Tapio Ala-NissilÀ
+ PDF Chat Dynamical Phase Transitions in Quantum Reservoir Computing 2021 Rodrigo MartĂ­nez‐Peña
Gian Luca Giorgi
Johannes Nokkala
Miguel C. Soriano
Roberta Zambrini
+ PDF Chat Dissipation alters modes of information encoding in small quantum reservoirs near criticality 2024 Krai Cheamsawat
Thiparat Chotibut
+ Quantum reservoir computing using arrays of Rydberg atoms 2021 Rodrigo Araiza Bravo
Khadijeh Najafi
Xun Gao
Susanne F. Yelin
+ Exploring quantum mechanical advantage for reservoir computing 2023 Niclas Götting
Frederik Lohof
Christopher Gies
+ Optimal quantum reservoir computing for the NISQ era 2022 L. Domingo
G. Carlo
F. Borondo
+ Quantum Reservoir Computing Implementations for Classical and Quantum Problems 2022 Adam Burgess
Marian Florescu
+ PDF Chat Reservoir Computing Generalized 2024 Tomoyuki Kubota
Yusuke Imai
Sumito Tsunegi
Kohei Nakajima
+ The Reservoir Learning Power across Quantum Many-Boby Localization Transition 2021 Wei Xia
Jie Zou
Xingze Qiu
Xiaopeng Li
+ PDF Chat Memory-Augmented Quantum Reservoir Computing 2024 Jacopo Settino
L. Salatino
L. Mariani
M. Channab
Ludovico Bozzolo
S. Vallisa
Paola BarillĂ 
A. Policicchio
N. Lo Gullo
Andrea Giordano
+ PDF Chat Realising and compressing quantum circuits with quantum reservoir computing 2021 Sanjib Ghosh
Tanjung Krisnanda
Tomasz Paterek
T. C. H. Liew
+ PDF Chat Universal quantum reservoir computing 2020 Sanjib Ghosh
Tanjung Krisnanda
Tomasz Paterek
T. C. H. Liew
+ PDF Chat Quantum reservoir computing with a single nonlinear oscillator 2021 Luke C. G. Govia
Guilhem Ribeill
Graham E. Rowlands
Hari Krovi
Thomas Ohki
+ PDF Chat Temporal Information Processing on Noisy Quantum Computers 2020 Jiayin Chen
Hendra I. Nurdin
Naoki Yamamoto
+ PDF Chat Practical and Scalable Quantum Reservoir Computing 2024 Chuanzhou Zhu
Peter J. Ehlers
Hendra I. Nurdin
Daniel Soh
+ PDF Chat Neural Network Quantum States for the Interacting Hofstadter Model with Higher Local Occupations and Long-Range Interactions 2024 Fabian Döschl
Felix A. Palm
Hannah Lange
Fabian Grusdt
Annabelle Bohrdt
+ Universal performance gap of neural quantum states applied to the Hofstadter-Bose-Hubbard model 2025 Eimantas Ledinauskas
Egidijus Anisimovas
+ PDF Chat Realising and Compressing Quantum Circuits With Quantum Reservoir Computing 2021 Sanjib Ghosh
Tanjung Krisnanda
Tomasz Paterek
T. C. H. Liew
+ Higher-Order Quantum Reservoir Computing 2020 Quoc Hoan Tran
Kohei Nakajima

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors