The Aldous--Hoover Theorem in Categorical Probability

Type: Preprint

Publication Date: 2024-11-19

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2411.12840

Abstract

The Aldous-Hoover Theorem concerns an infinite matrix of random variables whose distribution is invariant under finite permutations of rows and columns. It states that, up to equality in distribution, each random variable in the matrix can be expressed as a function only depending on four key variables: one common to the entire matrix, one that encodes information about its row, one that encodes information about its column, and a fourth one specific to the matrix entry. We state and prove the theorem within a category-theoretic approach to probability, namely the theory of Markov categories. This makes the proof more transparent and intuitive when compared to measure-theoretic ones. A key role is played by a newly identified categorical property, the Cauchy--Schwarz axiom, which also facilitates a new synthetic de Finetti Theorem. We further provide a variant of our proof using the ordered Markov property and the d-separation criterion, both generalized from Bayesian networks to Markov categories. We expect that this approach will facilitate a systematic development of more complex results in the future, such as categorical approaches to hierarchical exchangeability.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The d-separation criterion in Categorical Probability 2022 T. A. Fritz
Andreas Klingler
+ Representable Markov Categories and Comparison of Statistical Experiments in Categorical Probability 2020 T. A. Fritz
Tomáš Gonda
Paolo Perrone
Eigil Fjeldgren Rischel
+ PDF Chat Representable Markov categories and comparison of statistical experiments in categorical probability 2023 T. A. Fritz
Tomáš Gonda
Paolo Perrone
Eigil Fjeldgren Rischel
+ PDF Chat Infinite products and zero-one laws in categorical probability 2020 T. A. Fritz
Eigil Fjeldgren Rischel
+ Markov Categories and Entropy 2022 Paolo Perrone
+ Absolute continuity, supports and idempotent splitting in categorical probability 2023 T. A. Fritz
Tomáš Gonda
Antonio Lorenzin
Paolo Perrone
Dario Stein
+ PDF Chat Markov Categories and Entropy 2023 Paolo Perrone
+ PDF Chat De Finetti’s Theorem in Categorical Probability 2021 T. A. Fritz
Tomáš Gonda
Paolo Perrone
+ De Finetti's Theorem in Categorical Probability 2021 T. A. Fritz
Tomáš Gonda
Paolo Perrone
+ PDF Chat A Categorical Foundation for Bayesian Probability 2013 Jared Culbertson
Kirk Sturtz
+ The zero-one laws of Kolmogorov and Hewitt--Savage in categorical probability 2019 T. A. Fritz
Eigil Fjeldgren Rischel
+ Markov categories, causal theories, and the do-calculus 2022 Yimu Yin
Jiji Zhang
+ Ergodic Theory in Categorical Probability 2024
+ Conditional exact tests for Markovianity and reversibility in multiple categorical sequences 2011 Davide Di Cecco
+ Bimonoidal Structure of Probability Monads 2018 T. A. Fritz
Paolo Perrone
+ Categorical probability spaces, ergodic decompositions, and transitions to equilibrium 2023 Noé Ensarguet
Paolo Perrone
+ Axioms of Probability 2014 I. J. Good
+ PDF Chat Free gs-Monoidal Categories and Free Markov Categories 2023 T. A. Fritz
Wendong Liang
+ Free gs-monoidal categories and free Markov categories 2022 T. A. Fritz
Wendong Liang
+ Causal Markov Categories and Possibility Theory 2024 T. A. Fritz
Pedro Terán

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors