Spectrally distinguishing symmetric spaces II

Type: Preprint

Publication Date: 2024-11-11

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2411.06886

Abstract

The action of the subgroup $\operatorname{G}_2$ of $\operatorname{SO}(7)$ (resp.\ $\operatorname{Spin}(7)$ of $\operatorname{SO}(8)$) on the Grassmannian space $M=\frac{\operatorname{SO}(7)}{\operatorname{SO}(5)\times\operatorname{SO}(2)}$ (resp.\ $M=\frac{\operatorname{SO}(8)}{\operatorname{SO}(5)\times\operatorname{SO}(3)}$) is still transitive. We prove that the spectrum (i.e.\ the collection of eigenvalues of its Laplace-Beltrami operator) of a symmetric metric $g_0$ on $M$ coincides with the spectrum of a $\operatorname{G}_2$-invariant (resp.\ $\operatorname{Spin}(7)$-invariant) metric $g$ on $M$ only if $g_0$ and $g$ are isometric. As a consequence, each non-flat compact irreducible symmetric space of non-group type is spectrally unique among the family of all currently known homogeneous metrics on its underlying differentiable manifold.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Spectrally distinguishing symmetric spaces I 2023 Emilio A. Lauret
Juan Sebastián Rodríguez
+ A spectral identity between symmetric spaces 2004 Erez Lapid
Stephen Rallis
+ Riemannian and Lorentzian structures on the non symmetric space SO(2m)/Sp(m) 2007 Elisabeth Remm
Michel Goze
+ PDF Chat Semi-Riemannian Symmetric spaces 2005 Lionel Bérard Bergery
+ PDF Chat Symmetric Einstein Spaces and Spectral Geometry 1974 Harold Donnelly
+ Pseudo-Riemannian Symmetries on Heisenberg group $\mathbb{H}_{3}$ 2012 Michel Goze
P. Piu
+ Pseudo-Riemannian Symmetries on Heisenberg group $\mathbb{H}_{3}$ 2012 Michel Goze
Paola Piu
+ Grassmann geometry on symmetric spaces 1999 Quanqin
Jin Jin
+ The Spectral Geometry of Symmetric Spaces 1977 Peter Gilkey
+ PDF Chat Fundamental Groups of Semisimple Symmetric Spaces 2018 Jiro Sekiguchi
+ Sub-Riemannian symmetric spaces of Engel type 1999 Dulce Mary de Almeida
+ PDF Chat Embeddings from noncompact symmetric spaces to their compact duals 2020 Yunxia Chen
Yongdong Huang
Naichung Conan Leung
+ Embeddings from noncompact symmetric spaces to their compact duals 2018 Yunxia Chen
Yongdong Huang
Naichung Conan Leung
+ PDF Chat Riemannian invariants that characterize rotational symmetries of the standard sphere 2017 Masayuki Aino
+ Pseudo-Riemannian Symmetries on Heisenberg groups 2014 Michel Goze
P. Piu
Elisabeth Remm
+ Pseudo-Riemannian Symmetries on Heisenberg groups 2014 Michel Goze
Paola Piu
Elisabeth Remm
+ Homogeneous contact metric structures on five-dimensional generalized symmetric spaces 2012 Giovanni Calvaruso
+ Compact Clifford-Klein forms of symmetric spaces -- revisited 2005 Toshiyuki Kobayashi
Taro Yoshino
+ RIEMANNIAN Γ-SYMMETRIC SPACES 2009 Michel Goze
Elisabeth Remm
+ Characterizations of the Lorentzian manifolds admitting a type of semi-symmetric metric connection 2020 Sudhakar Kumar Chaubey
Young Jin Suh
Uday Chand De

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors