Higher uniformity of arithmetic functions in short intervals II. Almost all intervals

Type: Preprint

Publication Date: 2024-11-08

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2411.05770

Abstract

We study higher uniformity properties of the von Mangoldt function $\Lambda$, the M\"obius function $\mu$, and the divisor functions $d_k$ on short intervals $(x,x+H]$ for almost all $x \in [X, 2X]$. Let $\Lambda^\sharp$ and $d_k^\sharp$ be suitable approximants of $\Lambda$ and $d_k$, $G/\Gamma$ a filtered nilmanifold, and $F\colon G/\Gamma \to \mathbb{C}$ a Lipschitz function. Then our results imply for instance that when $X^{1/3+\varepsilon} \leq H \leq X$ we have, for almost all $x \in [X, 2X]$, \[ \sup_{g \in \text{Poly}(\mathbb{Z} \to G)} \left| \sum_{x < n \leq x+H} (\Lambda(n)-\Lambda^\sharp(n)) \overline{F}(g(n)\Gamma) \right| \ll H\log^{-A} X \] for any fixed $A>0$, and that when $X^{\varepsilon} \leq H \leq X$ we have, for almost all $x \in [X, 2X]$, \[ \sup_{g \in \text{Poly}(\mathbb{Z} \to G)} \left| \sum_{x < n \leq x+H} (d_k(n)-d_k^\sharp(n)) \overline{F}(g(n)\Gamma) \right| = o(H \log^{k-1} X). \] As a consequence, we show that the short interval Gowers norms $\|\Lambda-\Lambda^\sharp\|_{U^s(X,X+H]}$ and $\|d_k-d_k^\sharp\|_{U^s(X,X+H]}$ are also asymptotically small for any fixed $s$ in the same ranges of $H$. This in turn allows us to establish the Hardy-Littlewood conjecture and the divisor correlation conjecture with a short average over one variable. Our main new ingredients are type $II$ estimates obtained by developing a "contagion lemma" for nilsequences and then using this to "scale up" an approximate functional equation for the nilsequence to a larger scale. This extends an approach developed by Walsh for Fourier uniformity.

Locations

  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Higher uniformity of arithmetic functions in short intervals I. All intervals 2022 Kaisa Matomäki
Xuancheng Shao
Terence Tao
Joni Teräväinen
+ PDF Higher uniformity of arithmetic functions in short intervals I. All intervals 2023 Kaisa Matomäki
Xuancheng Shao
Terence Tao
Joni Teräväinen
+ PDF Correction to: Fourier uniformity of bounded multiplicative functions in short intervals on average 2019 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
+ Hardy-Littlewood Numbers in Short Intervals 1995 Alberto Perelli
J. Pintz
+ Notes on Universality in Short Intervals and Exponential Shifts 2023 Johan Andersson
Ramūnas Garunkštis
Roma Kačinskaitė
Keita Nakai
Łukasz Pańkowski
Athanasios Sourmelidis
Rasa
Jörn Steuding
Saeree Wananiyakul
+ Möbius Disjointness for Nilsequences Along Short Intervals 2019 Xiaoguang He
Zhiren Wang
+ PDF Chat Fourier uniformity of bounded multiplicative functions in short intervals on average 2019 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
+ Bombieri's Theorem in Short Intervals 2012 Lao
Hui-Xue
+ Th\'eor\`eme d'Erd\H{o}s-Kac dans presque tous les petits intervalles 2016 Élie Goudout
+ PDF Additive functions in short intervals, gaps and a conjecture of Erdős 2022 Alexander P. Mangerel
+ PDF A conditional result on Goldbach numbers in short intervals 1998 Alessandro Languasco
+ On the mean square of the divisor function in short intervals 2007 Aleksandar Ivić
+ On the mean square of the divisor function in short intervals 2007 Aleksandar Ivić
+ Chen’s theorem in short intervals 1998 Minggao Lu
Yingchun Cai
+ ON THE HARDY–LITTLEWOOD PROBLEM IN SHORT INTERVALS 2008 Alessandro Languasco
Alessandro Zaccagnini
+ Bombieri's theorem in short intervals 1989 Tao Zhan
+ PDF Chen's theorem in short intervals 1999 Ying Cai
Ming Lu
+ Additive functions in short intervals, gaps and a conjecture of Erd\H{o}s 2021 Alexander P. Mangerel
+ PDF On mean value results for the Riemann zeta-function in short intervals. 2009 Aleksandar Ivić
+ On the Liouville function in short intervals 2020 Jake Chinis

Works Cited by This (0)

Action Title Year Authors