Type: Preprint
Publication Date: 2024-10-31
Citations: 0
DOI: https://doi.org/10.48550/arxiv.2410.23993
We give a dimension-free bound on $l^p(\mathbb{Z} ^d)$, $p \in [2, \infty]$ for the discrete Hardy-Littlewood maximal operator over the $l^q$ balls in $\mathbb{Z} ^d$ with small dyadic radii. Our result combined with the work of Kosz, Mirek, Plewa, Wr\'obel gives dimension-free estimates on $l^p(\mathbb{Z}^d)$, $p \in [2, \infty]$ for the discrete dyadic Hardy-Littlewood maximal operator over $l^q$ balls for $q \geq 2$.
Action | Title | Year | Authors |
---|
Action | Title | Year | Authors |
---|