Nonstabilizerness Enhances Thrifty Shadow Estimation

Type: Preprint

Publication Date: 2024-10-31

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2410.23977

View Chat PDF

Abstract

Shadow estimation is a powerful approach for estimating the expectation values of many observables. Thrifty shadow estimation is a simple variant that is proposed to reduce the experimental overhead by reusing random circuits repeatedly. Although this idea is so simple, its performance is quite elusive. In this work we show that thrifty shadow estimation is effective on average whenever the unitary ensemble forms a 2-design, in sharp contrast with the previous expectation. In thrifty shadow estimation based on the Clifford group, the variance is inversely correlated with the degree of nonstabilizerness of the state and observable, which is a key resource in quantum information processing. For fidelity estimation, it decreases exponentially with the stabilizer 2-R\'{e}nyi entropy of the target state, which endows the stabilizer 2-R\'{e}nyi entropy with a clear operational meaning. In addition,we propose a simple circuit to enhance the efficiency, which requires only one layer of $T$ gates and is particularly appealing in the NISQ era.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Stability of classical shadows under gate-dependent noise 2023 Raphael Brieger
Markus R. Heinrich
Ingo Roth
Martin Kliesch
+ PDF Chat The Magic in Qudit Shadow Estimation based on the Clifford Group 2024 Chengsi Mao
Changhyun Yi
Huangjun Zhu
+ Minimal Clifford Shadow Estimation by Mutually Unbiased Bases 2023 Qingyue Zhang
Qing Liu
You Zhou
+ PDF Chat Minimal-Clifford shadow estimation by mutually unbiased bases 2024 Qingyue Zhang
Qing Liu
You Zhou
+ PDF Chat Thrifty Shadow Estimation: Reusing Quantum Circuits and Bounding Tails 2023 Jonas Helsen
Michael Walter
+ Thrifty shadow estimation: re-using quantum circuits and bounding tails 2022 Jonas Helsen
Michael Walter
+ PDF Chat Probing quantum complexity via universal saturation of stabilizer entropies 2024 Tobias Haug
Leandro Aolita
M. S. Kim
+ PDF Chat Symmetric Clifford twirling for cost-optimal quantum error mitigation in early FTQC regime 2024 Kento Tsubouchi
Yosuke Mitsuhashi
Kunal Sharma
Nobuyuki Yoshioka
+ PDF Chat Error Crafting in Probabilistic Quantum Gate Synthesis 2024 Nobuyuki Yoshioka
Seiseki Akibue
Hayata Morisaki
Kento Tsubouchi
Yasunari Suzuki
+ PDF Chat Contractive Unitary and Classical Shadow Tomography 2024 Yadong Wu
Ce Wang
Juan Yao
Hui Zhai
Yi‐Zhuang You
Pengfei Zhang
+ PDF Chat Circuit optimization of qubit IC-POVMs for shadow estimation 2024 You Zhou
Qing Liu
You Zhou
+ Group-theoretic error mitigation enabled by classical shadows and symmetries 2023 Andrew Zhao
Akimasa Miyake
+ Closed-form analytic expressions for shadow estimation with brickwork circuits 2022 Mirko Arienzo
Markus R. Heinrich
Ingo Roth
Martin Kliesch
+ PDF Chat Theory of quantum error mitigation for non-Clifford gates 2024 David Layden
Bradley Mitchell
Karthik Siva
+ PDF Chat Robust shallow shadows 2024 Renato M. S. Farias
Raghavendra D. Peddinti
Ingo Roth
Leandro Aolita
+ PDF Chat Nonstabilizerness determining the hardness of direct fidelity estimation 2023 Lorenzo Leone
Salvatore F. E. Oliviero
Alioscia Hamma
+ PDF Chat Noise-mitigated randomized measurements and self-calibrating shadow estimation 2024 Emilio Onorati
Jonas Kitzinger
Jonas Helsen
Marios Ioannou
Albert H. Werner
Ingo Roth
Jens Eisert
+ PDF Chat Estimating the fidelity of<i>T</i>gates using standard interleaved randomized benchmarking 2017 Robin Harper
Steven T. Flammia
+ PDF Chat Quantifying nonstabilizerness through entanglement spectrum flatness 2024 Emanuele Tirrito
Poetri Sonya Tarabunga
Gugliemo Lami
Titas Chanda
Lorenzo Leone
Salvatore F. E. Oliviero
Marcello Dalmonte
Mario Collura
Alioscia Hamma
+ Resource-efficient shadow tomography using equatorial measurements 2023 Guedong Park
Yong Siah Teo
Hyunseok Jeong

Cited by (0)

Action Title Year Authors

Citing (0)

Action Title Year Authors